L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s + 9-s + 2·11-s − 12-s + 6·13-s − 2·14-s + 16-s + 2·17-s − 18-s − 2·21-s − 2·22-s − 4·23-s + 24-s − 6·26-s − 27-s + 2·28-s − 8·31-s − 32-s − 2·33-s − 2·34-s + 36-s + 2·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.288·12-s + 1.66·13-s − 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.436·21-s − 0.426·22-s − 0.834·23-s + 0.204·24-s − 1.17·26-s − 0.192·27-s + 0.377·28-s − 1.43·31-s − 0.176·32-s − 0.348·33-s − 0.342·34-s + 1/6·36-s + 0.328·37-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(150s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7912367897 |
L(21) |
≈ |
0.7912367897 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
good | 7 | 1−2T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84190636059108486195039921806, −11.61114212468973479325694460077, −11.12199065028595017208430791111, −10.04002787682700509865642496375, −8.831748546434365307733167695606, −7.907415924764968545249330860332, −6.60420630283526755468874076032, −5.54667504701134155415335928612, −3.85245454580381340504020564721, −1.48708143658565903074344661320,
1.48708143658565903074344661320, 3.85245454580381340504020564721, 5.54667504701134155415335928612, 6.60420630283526755468874076032, 7.907415924764968545249330860332, 8.831748546434365307733167695606, 10.04002787682700509865642496375, 11.12199065028595017208430791111, 11.61114212468973479325694460077, 12.84190636059108486195039921806