L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s + 9-s + 2·11-s − 12-s + 6·13-s − 2·14-s + 16-s + 2·17-s − 18-s − 2·21-s − 2·22-s − 4·23-s + 24-s − 6·26-s − 27-s + 2·28-s − 8·31-s − 32-s − 2·33-s − 2·34-s + 36-s + 2·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.288·12-s + 1.66·13-s − 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.436·21-s − 0.426·22-s − 0.834·23-s + 0.204·24-s − 1.17·26-s − 0.192·27-s + 0.377·28-s − 1.43·31-s − 0.176·32-s − 0.348·33-s − 0.342·34-s + 1/6·36-s + 0.328·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7912367897\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7912367897\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 - 10 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 + 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84190636059108486195039921806, −11.61114212468973479325694460077, −11.12199065028595017208430791111, −10.04002787682700509865642496375, −8.831748546434365307733167695606, −7.907415924764968545249330860332, −6.60420630283526755468874076032, −5.54667504701134155415335928612, −3.85245454580381340504020564721, −1.48708143658565903074344661320,
1.48708143658565903074344661320, 3.85245454580381340504020564721, 5.54667504701134155415335928612, 6.60420630283526755468874076032, 7.907415924764968545249330860332, 8.831748546434365307733167695606, 10.04002787682700509865642496375, 11.12199065028595017208430791111, 11.61114212468973479325694460077, 12.84190636059108486195039921806