L(s) = 1 | − 8i·2-s − 27i·3-s − 64·4-s − 216·6-s + 988i·7-s + 512i·8-s − 729·9-s − 8.04e3·11-s + 1.72e3i·12-s − 3.33e3i·13-s + 7.90e3·14-s + 4.09e3·16-s − 6.58e3i·17-s + 5.83e3i·18-s + 2.74e4·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 1.08i·7-s + 0.353i·8-s − 0.333·9-s − 1.82·11-s + 0.288i·12-s − 0.420i·13-s + 0.769·14-s + 0.250·16-s − 0.324i·17-s + 0.235i·18-s + 0.917·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.447+0.894i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), 0.447+0.894i)
|
Particular Values
L(4) |
≈ |
1.521820546 |
L(21) |
≈ |
1.521820546 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8iT |
| 3 | 1+27iT |
| 5 | 1 |
good | 7 | 1−988iT−8.23e5T2 |
| 11 | 1+8.04e3T+1.94e7T2 |
| 13 | 1+3.33e3iT−6.27e7T2 |
| 17 | 1+6.58e3iT−4.10e8T2 |
| 19 | 1−2.74e4T+8.93e8T2 |
| 23 | 1−4.86e4iT−3.40e9T2 |
| 29 | 1−1.32e5T+1.72e10T2 |
| 31 | 1−2.54e5T+2.75e10T2 |
| 37 | 1+5.19e5iT−9.49e10T2 |
| 41 | 1−9.23e4T+1.94e11T2 |
| 43 | 1+2.34e5iT−2.71e11T2 |
| 47 | 1−1.27e6iT−5.06e11T2 |
| 53 | 1+8.35e5iT−1.17e12T2 |
| 59 | 1−3.06e6T+2.48e12T2 |
| 61 | 1+1.00e6T+3.14e12T2 |
| 67 | 1+3.08e6iT−6.06e12T2 |
| 71 | 1+3.66e6T+9.09e12T2 |
| 73 | 1−1.12e6iT−1.10e13T2 |
| 79 | 1−4.12e6T+1.92e13T2 |
| 83 | 1−4.58e6iT−2.71e13T2 |
| 89 | 1−5.76e6T+4.42e13T2 |
| 97 | 1+6.74e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.66950331044554007293304700140, −10.59811131811901429942772406552, −9.551958405922810777014205554332, −8.378154957688452958374154989317, −7.54266166111324126413640217316, −5.81936462114732489458473556228, −5.02039526231186081966914078584, −3.02409600981238181618559015111, −2.29608609106302129126504774458, −0.68633964217214723757157626426,
0.69448766416874126982960865037, 2.89242788396088399298123728289, 4.34175353228633845951893783581, 5.19367120382675556141997339137, 6.57713362165829208589477584732, 7.70981577926883376693814812200, 8.535409816091331914409079973231, 10.11963302022571021446296684233, 10.37157253146118047905143806682, 11.82957637346468736596316953398