Properties

Label 150.8.c.a
Level 150150
Weight 88
Character orbit 150.c
Analytic conductor 46.85846.858
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 46.857753822646.8577538226
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q8iq227iq364q4216q6+988iq7+512iq8729q98040q11+1728iq123334iq13+7904q14+4096q166582iq17+5832iq18+27436q19++5861160q99+O(q100) q - 8 i q^{2} - 27 i q^{3} - 64 q^{4} - 216 q^{6} + 988 i q^{7} + 512 i q^{8} - 729 q^{9} - 8040 q^{11} + 1728 i q^{12} - 3334 i q^{13} + 7904 q^{14} + 4096 q^{16} - 6582 i q^{17} + 5832 i q^{18} + 27436 q^{19} + \cdots + 5861160 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q128q4432q61458q916080q11+15808q14+8192q16+54872q19+53352q21+27648q2453344q26+264828q29+508816q31105312q34+93312q36++11722320q99+O(q100) 2 q - 128 q^{4} - 432 q^{6} - 1458 q^{9} - 16080 q^{11} + 15808 q^{14} + 8192 q^{16} + 54872 q^{19} + 53352 q^{21} + 27648 q^{24} - 53344 q^{26} + 264828 q^{29} + 508816 q^{31} - 105312 q^{34} + 93312 q^{36}+ \cdots + 11722320 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
8.00000i 27.0000i −64.0000 0 −216.000 988.000i 512.000i −729.000 0
49.2 8.00000i 27.0000i −64.0000 0 −216.000 988.000i 512.000i −729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.c.a 2
3.b odd 2 1 450.8.c.r 2
5.b even 2 1 inner 150.8.c.a 2
5.c odd 4 1 30.8.a.d 1
5.c odd 4 1 150.8.a.i 1
15.d odd 2 1 450.8.c.r 2
15.e even 4 1 90.8.a.c 1
15.e even 4 1 450.8.a.x 1
20.e even 4 1 240.8.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.8.a.d 1 5.c odd 4 1
90.8.a.c 1 15.e even 4 1
150.8.a.i 1 5.c odd 4 1
150.8.c.a 2 1.a even 1 1 trivial
150.8.c.a 2 5.b even 2 1 inner
240.8.a.j 1 20.e even 4 1
450.8.a.x 1 15.e even 4 1
450.8.c.r 2 3.b odd 2 1
450.8.c.r 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+976144 T_{7}^{2} + 976144 acting on S8new(150,[χ])S_{8}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+64 T^{2} + 64 Copy content Toggle raw display
33 T2+729 T^{2} + 729 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+976144 T^{2} + 976144 Copy content Toggle raw display
1111 (T+8040)2 (T + 8040)^{2} Copy content Toggle raw display
1313 T2+11115556 T^{2} + 11115556 Copy content Toggle raw display
1717 T2+43322724 T^{2} + 43322724 Copy content Toggle raw display
1919 (T27436)2 (T - 27436)^{2} Copy content Toggle raw display
2323 T2+2361960000 T^{2} + 2361960000 Copy content Toggle raw display
2929 (T132414)2 (T - 132414)^{2} Copy content Toggle raw display
3131 (T254408)2 (T - 254408)^{2} Copy content Toggle raw display
3737 T2+269811680356 T^{2} + 269811680356 Copy content Toggle raw display
4141 (T92394)2 (T - 92394)^{2} Copy content Toggle raw display
4343 T2+55005259024 T^{2} + 55005259024 Copy content Toggle raw display
4747 T2+1632363969600 T^{2} + 1632363969600 Copy content Toggle raw display
5353 T2+697689337284 T^{2} + 697689337284 Copy content Toggle raw display
5959 (T3068760)2 (T - 3068760)^{2} Copy content Toggle raw display
6161 (T+1009330)2 (T + 1009330)^{2} Copy content Toggle raw display
6767 T2+9499784237584 T^{2} + 9499784237584 Copy content Toggle raw display
7171 (T+3666720)2 (T + 3666720)^{2} Copy content Toggle raw display
7373 T2+1260828053956 T^{2} + 1260828053956 Copy content Toggle raw display
7979 (T4128808)2 (T - 4128808)^{2} Copy content Toggle raw display
8383 T2+21036495941136 T^{2} + 21036495941136 Copy content Toggle raw display
8989 (T5763678)2 (T - 5763678)^{2} Copy content Toggle raw display
9797 T2+45529484982916 T^{2} + 45529484982916 Copy content Toggle raw display
show more
show less