Properties

Label 2-150-5.4-c7-0-8
Degree $2$
Conductor $150$
Sign $0.447 - 0.894i$
Analytic cond. $46.8577$
Root an. cond. $6.84527$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·2-s + 27i·3-s − 64·4-s − 216·6-s − 988i·7-s − 512i·8-s − 729·9-s − 8.04e3·11-s − 1.72e3i·12-s + 3.33e3i·13-s + 7.90e3·14-s + 4.09e3·16-s + 6.58e3i·17-s − 5.83e3i·18-s + 2.74e4·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 1.08i·7-s − 0.353i·8-s − 0.333·9-s − 1.82·11-s − 0.288i·12-s + 0.420i·13-s + 0.769·14-s + 0.250·16-s + 0.324i·17-s − 0.235i·18-s + 0.917·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(46.8577\)
Root analytic conductor: \(6.84527\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :7/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.521820546\)
\(L(\frac12)\) \(\approx\) \(1.521820546\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8iT \)
3 \( 1 - 27iT \)
5 \( 1 \)
good7 \( 1 + 988iT - 8.23e5T^{2} \)
11 \( 1 + 8.04e3T + 1.94e7T^{2} \)
13 \( 1 - 3.33e3iT - 6.27e7T^{2} \)
17 \( 1 - 6.58e3iT - 4.10e8T^{2} \)
19 \( 1 - 2.74e4T + 8.93e8T^{2} \)
23 \( 1 + 4.86e4iT - 3.40e9T^{2} \)
29 \( 1 - 1.32e5T + 1.72e10T^{2} \)
31 \( 1 - 2.54e5T + 2.75e10T^{2} \)
37 \( 1 - 5.19e5iT - 9.49e10T^{2} \)
41 \( 1 - 9.23e4T + 1.94e11T^{2} \)
43 \( 1 - 2.34e5iT - 2.71e11T^{2} \)
47 \( 1 + 1.27e6iT - 5.06e11T^{2} \)
53 \( 1 - 8.35e5iT - 1.17e12T^{2} \)
59 \( 1 - 3.06e6T + 2.48e12T^{2} \)
61 \( 1 + 1.00e6T + 3.14e12T^{2} \)
67 \( 1 - 3.08e6iT - 6.06e12T^{2} \)
71 \( 1 + 3.66e6T + 9.09e12T^{2} \)
73 \( 1 + 1.12e6iT - 1.10e13T^{2} \)
79 \( 1 - 4.12e6T + 1.92e13T^{2} \)
83 \( 1 + 4.58e6iT - 2.71e13T^{2} \)
89 \( 1 - 5.76e6T + 4.42e13T^{2} \)
97 \( 1 - 6.74e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.82957637346468736596316953398, −10.37157253146118047905143806682, −10.11963302022571021446296684233, −8.535409816091331914409079973231, −7.70981577926883376693814812200, −6.57713362165829208589477584732, −5.19367120382675556141997339137, −4.34175353228633845951893783581, −2.89242788396088399298123728289, −0.69448766416874126982960865037, 0.68633964217214723757157626426, 2.29608609106302129126504774458, 3.02409600981238181618559015111, 5.02039526231186081966914078584, 5.81936462114732489458473556228, 7.54266166111324126413640217316, 8.378154957688452958374154989317, 9.551958405922810777014205554332, 10.59811131811901429942772406552, 11.66950331044554007293304700140

Graph of the $Z$-function along the critical line