Properties

Label 450.8.a.x
Level $450$
Weight $8$
Character orbit 450.a
Self dual yes
Analytic conductor $140.573$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,8,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(140.573261468\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + 988 q^{7} + 512 q^{8} + 8040 q^{11} + 3334 q^{13} + 7904 q^{14} + 4096 q^{16} + 6582 q^{17} - 27436 q^{19} + 64320 q^{22} + 48600 q^{23} + 26672 q^{26} + 63232 q^{28} + 132414 q^{29}+ \cdots + 1220808 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 0 64.0000 0 0 988.000 512.000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.8.a.x 1
3.b odd 2 1 150.8.a.i 1
5.b even 2 1 90.8.a.c 1
5.c odd 4 2 450.8.c.r 2
15.d odd 2 1 30.8.a.d 1
15.e even 4 2 150.8.c.a 2
60.h even 2 1 240.8.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.8.a.d 1 15.d odd 2 1
90.8.a.c 1 5.b even 2 1
150.8.a.i 1 3.b odd 2 1
150.8.c.a 2 15.e even 4 2
240.8.a.j 1 60.h even 2 1
450.8.a.x 1 1.a even 1 1 trivial
450.8.c.r 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(450))\):

\( T_{7} - 988 \) Copy content Toggle raw display
\( T_{11} - 8040 \) Copy content Toggle raw display
\( T_{17} - 6582 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 988 \) Copy content Toggle raw display
$11$ \( T - 8040 \) Copy content Toggle raw display
$13$ \( T - 3334 \) Copy content Toggle raw display
$17$ \( T - 6582 \) Copy content Toggle raw display
$19$ \( T + 27436 \) Copy content Toggle raw display
$23$ \( T - 48600 \) Copy content Toggle raw display
$29$ \( T - 132414 \) Copy content Toggle raw display
$31$ \( T - 254408 \) Copy content Toggle raw display
$37$ \( T + 519434 \) Copy content Toggle raw display
$41$ \( T + 92394 \) Copy content Toggle raw display
$43$ \( T - 234532 \) Copy content Toggle raw display
$47$ \( T + 1277640 \) Copy content Toggle raw display
$53$ \( T + 835278 \) Copy content Toggle raw display
$59$ \( T - 3068760 \) Copy content Toggle raw display
$61$ \( T + 1009330 \) Copy content Toggle raw display
$67$ \( T + 3082172 \) Copy content Toggle raw display
$71$ \( T - 3666720 \) Copy content Toggle raw display
$73$ \( T + 1122866 \) Copy content Toggle raw display
$79$ \( T + 4128808 \) Copy content Toggle raw display
$83$ \( T - 4586556 \) Copy content Toggle raw display
$89$ \( T - 5763678 \) Copy content Toggle raw display
$97$ \( T + 6747554 \) Copy content Toggle raw display
show more
show less