L(s) = 1 | + (1.99 + 3.46i)5-s + (0.605 + 2.57i)7-s + (4.23 + 2.44i)11-s + 0.678i·13-s + (3.57 − 6.19i)17-s + (4.19 − 2.42i)19-s + (0.556 − 0.321i)23-s + (−5.49 + 9.52i)25-s − 4.89i·29-s + (4.60 + 2.65i)31-s + (−7.70 + 7.24i)35-s + (−0.0905 − 0.156i)37-s − 9.52·41-s − 2.28·43-s + (1.62 + 2.81i)47-s + ⋯ |
L(s) = 1 | + (0.894 + 1.54i)5-s + (0.229 + 0.973i)7-s + (1.27 + 0.737i)11-s + 0.188i·13-s + (0.867 − 1.50i)17-s + (0.962 − 0.555i)19-s + (0.116 − 0.0670i)23-s + (−1.09 + 1.90i)25-s − 0.908i·29-s + (0.827 + 0.477i)31-s + (−1.30 + 1.22i)35-s + (−0.0148 − 0.0257i)37-s − 1.48·41-s − 0.348·43-s + (0.237 + 0.410i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.165 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.323182265\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.323182265\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.605 - 2.57i)T \) |
good | 5 | \( 1 + (-1.99 - 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.23 - 2.44i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.678iT - 13T^{2} \) |
| 17 | \( 1 + (-3.57 + 6.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.19 + 2.42i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.556 + 0.321i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4.89iT - 29T^{2} \) |
| 31 | \( 1 + (-4.60 - 2.65i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.0905 + 0.156i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9.52T + 41T^{2} \) |
| 43 | \( 1 + 2.28T + 43T^{2} \) |
| 47 | \( 1 + (-1.62 - 2.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.96 + 3.44i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.94 + 8.57i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (9.15 - 5.28i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.39 + 9.34i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.03iT - 71T^{2} \) |
| 73 | \( 1 + (-0.409 - 0.236i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.08 - 7.07i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.53T + 83T^{2} \) |
| 89 | \( 1 + (8.90 + 15.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.07iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.588067333553366023283870096681, −9.238060499937250790846399848462, −7.936597080635709448876989149979, −6.95050132811326981361080815336, −6.59354120249588859849883838716, −5.62784133255175442225430474287, −4.80419503809866343358086195039, −3.32021829044458824106536033005, −2.65718254880629312543134622228, −1.62751909990298823692179484041,
1.11922646058009259662409036304, 1.49108124269569695313664048530, 3.45503764217551215318687944493, 4.21207331426679290873796321340, 5.22456391485467806373520479121, 5.88795897454157092214382469734, 6.73590492794283692069152251944, 7.994797139218189136702724229135, 8.463940229441262867523709349540, 9.313574991961802970512834750744