L(s) = 1 | + (1.99 + 3.46i)5-s + (0.605 + 2.57i)7-s + (4.23 + 2.44i)11-s + 0.678i·13-s + (3.57 − 6.19i)17-s + (4.19 − 2.42i)19-s + (0.556 − 0.321i)23-s + (−5.49 + 9.52i)25-s − 4.89i·29-s + (4.60 + 2.65i)31-s + (−7.70 + 7.24i)35-s + (−0.0905 − 0.156i)37-s − 9.52·41-s − 2.28·43-s + (1.62 + 2.81i)47-s + ⋯ |
L(s) = 1 | + (0.894 + 1.54i)5-s + (0.229 + 0.973i)7-s + (1.27 + 0.737i)11-s + 0.188i·13-s + (0.867 − 1.50i)17-s + (0.962 − 0.555i)19-s + (0.116 − 0.0670i)23-s + (−1.09 + 1.90i)25-s − 0.908i·29-s + (0.827 + 0.477i)31-s + (−1.30 + 1.22i)35-s + (−0.0148 − 0.0257i)37-s − 1.48·41-s − 0.348·43-s + (0.237 + 0.410i)47-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)(0.165−0.986i)Λ(2−s)
Λ(s)=(=(1512s/2ΓC(s+1/2)L(s)(0.165−0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
0.165−0.986i
|
Analytic conductor: |
12.0733 |
Root analytic conductor: |
3.47467 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1512(1025,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :1/2), 0.165−0.986i)
|
Particular Values
L(1) |
≈ |
2.323182265 |
L(21) |
≈ |
2.323182265 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.605−2.57i)T |
good | 5 | 1+(−1.99−3.46i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−4.23−2.44i)T+(5.5+9.52i)T2 |
| 13 | 1−0.678iT−13T2 |
| 17 | 1+(−3.57+6.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.19+2.42i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.556+0.321i)T+(11.5−19.9i)T2 |
| 29 | 1+4.89iT−29T2 |
| 31 | 1+(−4.60−2.65i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.0905+0.156i)T+(−18.5+32.0i)T2 |
| 41 | 1+9.52T+41T2 |
| 43 | 1+2.28T+43T2 |
| 47 | 1+(−1.62−2.81i)T+(−23.5+40.7i)T2 |
| 53 | 1+(5.96+3.44i)T+(26.5+45.8i)T2 |
| 59 | 1+(−4.94+8.57i)T+(−29.5−51.0i)T2 |
| 61 | 1+(9.15−5.28i)T+(30.5−52.8i)T2 |
| 67 | 1+(−5.39+9.34i)T+(−33.5−58.0i)T2 |
| 71 | 1+1.03iT−71T2 |
| 73 | 1+(−0.409−0.236i)T+(36.5+63.2i)T2 |
| 79 | 1+(−4.08−7.07i)T+(−39.5+68.4i)T2 |
| 83 | 1+2.53T+83T2 |
| 89 | 1+(8.90+15.4i)T+(−44.5+77.0i)T2 |
| 97 | 1+3.07iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.588067333553366023283870096681, −9.238060499937250790846399848462, −7.936597080635709448876989149979, −6.95050132811326981361080815336, −6.59354120249588859849883838716, −5.62784133255175442225430474287, −4.80419503809866343358086195039, −3.32021829044458824106536033005, −2.65718254880629312543134622228, −1.62751909990298823692179484041,
1.11922646058009259662409036304, 1.49108124269569695313664048530, 3.45503764217551215318687944493, 4.21207331426679290873796321340, 5.22456391485467806373520479121, 5.88795897454157092214382469734, 6.73590492794283692069152251944, 7.994797139218189136702724229135, 8.463940229441262867523709349540, 9.313574991961802970512834750744