Properties

Label 1512.2.bl.b.1025.8
Level $1512$
Weight $2$
Character 1512.1025
Analytic conductor $12.073$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,2,Mod(593,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 84x^{12} - 208x^{10} + 882x^{8} + 4424x^{6} + 10340x^{4} + 20412x^{2} + 17689 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.8
Root \(2.23600 - 1.01798i\) of defining polynomial
Character \(\chi\) \(=\) 1512.1025
Dual form 1512.2.bl.b.593.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99959 + 3.46340i) q^{5} +(0.605908 + 2.57544i) q^{7} +(4.23559 + 2.44542i) q^{11} +0.678883i q^{13} +(3.57564 - 6.19319i) q^{17} +(4.19700 - 2.42314i) q^{19} +(0.556910 - 0.321532i) q^{23} +(-5.49674 + 9.52064i) q^{25} -4.89084i q^{29} +(4.60646 + 2.65954i) q^{31} +(-7.70819 + 7.24833i) q^{35} +(-0.0905386 - 0.156817i) q^{37} -9.52435 q^{41} -2.28373 q^{43} +(1.62531 + 2.81511i) q^{47} +(-6.26575 + 3.12096i) q^{49} +(-5.96312 - 3.44281i) q^{53} +19.5594i q^{55} +(4.94932 - 8.57247i) q^{59} +(-9.15398 + 5.28505i) q^{61} +(-2.35124 + 1.35749i) q^{65} +(5.39345 - 9.34172i) q^{67} -1.03596i q^{71} +(0.409461 + 0.236403i) q^{73} +(-3.73164 + 12.3902i) q^{77} +(4.08467 + 7.07486i) q^{79} -2.53549 q^{83} +28.5993 q^{85} +(-8.90995 - 15.4325i) q^{89} +(-1.74842 + 0.411340i) q^{91} +(16.7846 + 9.69058i) q^{95} -3.07058i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} + 6 q^{19} - 6 q^{25} + 6 q^{31} - 8 q^{37} + 44 q^{43} - 34 q^{49} - 6 q^{61} + 20 q^{67} - 14 q^{79} + 148 q^{85} - 54 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.99959 + 3.46340i 0.894245 + 1.54888i 0.834736 + 0.550650i \(0.185620\pi\)
0.0595092 + 0.998228i \(0.481046\pi\)
\(6\) 0 0
\(7\) 0.605908 + 2.57544i 0.229012 + 0.973424i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.23559 + 2.44542i 1.27708 + 0.737321i 0.976310 0.216376i \(-0.0694237\pi\)
0.300768 + 0.953697i \(0.402757\pi\)
\(12\) 0 0
\(13\) 0.678883i 0.188288i 0.995559 + 0.0941441i \(0.0300114\pi\)
−0.995559 + 0.0941441i \(0.969989\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.57564 6.19319i 0.867220 1.50207i 0.00239456 0.999997i \(-0.499238\pi\)
0.864826 0.502072i \(-0.167429\pi\)
\(18\) 0 0
\(19\) 4.19700 2.42314i 0.962858 0.555906i 0.0658063 0.997832i \(-0.479038\pi\)
0.897051 + 0.441926i \(0.145705\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.556910 0.321532i 0.116124 0.0670440i −0.440813 0.897599i \(-0.645310\pi\)
0.556937 + 0.830555i \(0.311977\pi\)
\(24\) 0 0
\(25\) −5.49674 + 9.52064i −1.09935 + 1.90413i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.89084i 0.908206i −0.890949 0.454103i \(-0.849960\pi\)
0.890949 0.454103i \(-0.150040\pi\)
\(30\) 0 0
\(31\) 4.60646 + 2.65954i 0.827345 + 0.477668i 0.852943 0.522005i \(-0.174816\pi\)
−0.0255979 + 0.999672i \(0.508149\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.70819 + 7.24833i −1.30292 + 1.22519i
\(36\) 0 0
\(37\) −0.0905386 0.156817i −0.0148844 0.0257806i 0.858487 0.512835i \(-0.171405\pi\)
−0.873372 + 0.487054i \(0.838071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.52435 −1.48745 −0.743726 0.668484i \(-0.766943\pi\)
−0.743726 + 0.668484i \(0.766943\pi\)
\(42\) 0 0
\(43\) −2.28373 −0.348265 −0.174133 0.984722i \(-0.555712\pi\)
−0.174133 + 0.984722i \(0.555712\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.62531 + 2.81511i 0.237075 + 0.410627i 0.959874 0.280432i \(-0.0904778\pi\)
−0.722798 + 0.691059i \(0.757144\pi\)
\(48\) 0 0
\(49\) −6.26575 + 3.12096i −0.895107 + 0.445851i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.96312 3.44281i −0.819098 0.472906i 0.0310076 0.999519i \(-0.490128\pi\)
−0.850105 + 0.526613i \(0.823462\pi\)
\(54\) 0 0
\(55\) 19.5594i 2.63738i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.94932 8.57247i 0.644346 1.11604i −0.340106 0.940387i \(-0.610463\pi\)
0.984452 0.175653i \(-0.0562037\pi\)
\(60\) 0 0
\(61\) −9.15398 + 5.28505i −1.17205 + 0.676682i −0.954161 0.299293i \(-0.903249\pi\)
−0.217886 + 0.975974i \(0.569916\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.35124 + 1.35749i −0.291635 + 0.168376i
\(66\) 0 0
\(67\) 5.39345 9.34172i 0.658914 1.14127i −0.321983 0.946746i \(-0.604349\pi\)
0.980897 0.194527i \(-0.0623173\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.03596i 0.122945i −0.998109 0.0614727i \(-0.980420\pi\)
0.998109 0.0614727i \(-0.0195797\pi\)
\(72\) 0 0
\(73\) 0.409461 + 0.236403i 0.0479238 + 0.0276688i 0.523770 0.851859i \(-0.324525\pi\)
−0.475847 + 0.879528i \(0.657858\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.73164 + 12.3902i −0.425260 + 1.41199i
\(78\) 0 0
\(79\) 4.08467 + 7.07486i 0.459562 + 0.795984i 0.998938 0.0460808i \(-0.0146732\pi\)
−0.539376 + 0.842065i \(0.681340\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.53549 −0.278306 −0.139153 0.990271i \(-0.544438\pi\)
−0.139153 + 0.990271i \(0.544438\pi\)
\(84\) 0 0
\(85\) 28.5993 3.10203
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.90995 15.4325i −0.944453 1.63584i −0.756843 0.653597i \(-0.773259\pi\)
−0.187610 0.982244i \(-0.560074\pi\)
\(90\) 0 0
\(91\) −1.74842 + 0.411340i −0.183284 + 0.0431202i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.7846 + 9.69058i 1.72206 + 0.994233i
\(96\) 0 0
\(97\) 3.07058i 0.311770i −0.987775 0.155885i \(-0.950177\pi\)
0.987775 0.155885i \(-0.0498229\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.26652 5.65779i 0.325031 0.562971i −0.656487 0.754337i \(-0.727958\pi\)
0.981519 + 0.191366i \(0.0612918\pi\)
\(102\) 0 0
\(103\) −15.7238 + 9.07816i −1.54932 + 0.894498i −0.551122 + 0.834425i \(0.685800\pi\)
−0.998194 + 0.0600728i \(0.980867\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.51173 + 4.33690i −0.726187 + 0.419264i −0.817026 0.576602i \(-0.804379\pi\)
0.0908388 + 0.995866i \(0.471045\pi\)
\(108\) 0 0
\(109\) −0.211816 + 0.366876i −0.0202883 + 0.0351403i −0.875991 0.482327i \(-0.839792\pi\)
0.855703 + 0.517467i \(0.173125\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.1027i 0.950378i −0.879884 0.475189i \(-0.842380\pi\)
0.879884 0.475189i \(-0.157620\pi\)
\(114\) 0 0
\(115\) 2.22719 + 1.28587i 0.207686 + 0.119908i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.1167 + 5.45633i 1.66075 + 0.500181i
\(120\) 0 0
\(121\) 6.46014 + 11.1893i 0.587286 + 1.01721i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −23.9691 −2.14386
\(126\) 0 0
\(127\) −12.5993 −1.11801 −0.559004 0.829165i \(-0.688816\pi\)
−0.559004 + 0.829165i \(0.688816\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.36188 5.82294i −0.293729 0.508753i 0.680960 0.732321i \(-0.261563\pi\)
−0.974688 + 0.223568i \(0.928230\pi\)
\(132\) 0 0
\(133\) 8.78364 + 9.34091i 0.761638 + 0.809959i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.8085 + 6.81763i 1.00887 + 0.582469i 0.910860 0.412716i \(-0.135420\pi\)
0.0980070 + 0.995186i \(0.468753\pi\)
\(138\) 0 0
\(139\) 19.0696i 1.61746i 0.588181 + 0.808729i \(0.299844\pi\)
−0.588181 + 0.808729i \(0.700156\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.66015 + 2.87547i −0.138829 + 0.240459i
\(144\) 0 0
\(145\) 16.9389 9.77968i 1.40670 0.812158i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.3433 8.28112i 1.17505 0.678416i 0.220186 0.975458i \(-0.429333\pi\)
0.954864 + 0.297042i \(0.0960001\pi\)
\(150\) 0 0
\(151\) 4.24897 7.35944i 0.345776 0.598902i −0.639718 0.768610i \(-0.720949\pi\)
0.985495 + 0.169707i \(0.0542822\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 21.2720i 1.70861i
\(156\) 0 0
\(157\) −14.8574 8.57792i −1.18575 0.684593i −0.228412 0.973565i \(-0.573353\pi\)
−0.957338 + 0.288972i \(0.906687\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.16552 + 1.23947i 0.0918559 + 0.0976837i
\(162\) 0 0
\(163\) −11.6206 20.1275i −0.910198 1.57651i −0.813784 0.581168i \(-0.802596\pi\)
−0.0964145 0.995341i \(-0.530737\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5685 0.817813 0.408907 0.912576i \(-0.365910\pi\)
0.408907 + 0.912576i \(0.365910\pi\)
\(168\) 0 0
\(169\) 12.5391 0.964548
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.0926046 0.160396i −0.00704060 0.0121947i 0.862484 0.506085i \(-0.168908\pi\)
−0.869524 + 0.493890i \(0.835574\pi\)
\(174\) 0 0
\(175\) −27.8503 8.38789i −2.10529 0.634065i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.1115 + 6.41523i 0.830513 + 0.479497i 0.854028 0.520227i \(-0.174152\pi\)
−0.0235152 + 0.999723i \(0.507486\pi\)
\(180\) 0 0
\(181\) 19.0696i 1.41743i 0.705495 + 0.708715i \(0.250725\pi\)
−0.705495 + 0.708715i \(0.749275\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.362081 0.627142i 0.0266207 0.0461084i
\(186\) 0 0
\(187\) 30.2899 17.4879i 2.21502 1.27884i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.97410 4.60385i 0.576986 0.333123i −0.182949 0.983122i \(-0.558564\pi\)
0.759935 + 0.649999i \(0.225231\pi\)
\(192\) 0 0
\(193\) 3.19384 5.53189i 0.229897 0.398194i −0.727880 0.685704i \(-0.759494\pi\)
0.957778 + 0.287510i \(0.0928276\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.95121i 0.210265i −0.994458 0.105132i \(-0.966473\pi\)
0.994458 0.105132i \(-0.0335267\pi\)
\(198\) 0 0
\(199\) 2.42679 + 1.40111i 0.172031 + 0.0993220i 0.583543 0.812082i \(-0.301666\pi\)
−0.411512 + 0.911404i \(0.634999\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.5960 2.96340i 0.884069 0.207990i
\(204\) 0 0
\(205\) −19.0448 32.9866i −1.33015 2.30388i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 23.7023 1.63953
\(210\) 0 0
\(211\) −5.60060 −0.385561 −0.192780 0.981242i \(-0.561751\pi\)
−0.192780 + 0.981242i \(0.561751\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.56653 7.90946i −0.311435 0.539421i
\(216\) 0 0
\(217\) −4.05839 + 13.4751i −0.275501 + 0.914748i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.20445 + 2.42744i 0.282822 + 0.163287i
\(222\) 0 0
\(223\) 2.76985i 0.185483i 0.995690 + 0.0927413i \(0.0295630\pi\)
−0.995690 + 0.0927413i \(0.970437\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.71883 + 8.17325i −0.313200 + 0.542478i −0.979053 0.203605i \(-0.934734\pi\)
0.665854 + 0.746082i \(0.268068\pi\)
\(228\) 0 0
\(229\) −23.3395 + 13.4751i −1.54232 + 0.890459i −0.543628 + 0.839326i \(0.682950\pi\)
−0.998692 + 0.0511324i \(0.983717\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.7010 + 10.7970i −1.22514 + 0.707338i −0.966010 0.258503i \(-0.916771\pi\)
−0.259135 + 0.965841i \(0.583437\pi\)
\(234\) 0 0
\(235\) −6.49991 + 11.2582i −0.424007 + 0.734402i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.9859i 1.03404i 0.855973 + 0.517020i \(0.172959\pi\)
−0.855973 + 0.517020i \(0.827041\pi\)
\(240\) 0 0
\(241\) −17.0570 9.84788i −1.09874 0.634358i −0.162850 0.986651i \(-0.552069\pi\)
−0.935890 + 0.352293i \(0.885402\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −23.3381 15.4601i −1.49101 0.987712i
\(246\) 0 0
\(247\) 1.64503 + 2.84927i 0.104671 + 0.181295i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.3966 −1.53990 −0.769950 0.638104i \(-0.779719\pi\)
−0.769950 + 0.638104i \(0.779719\pi\)
\(252\) 0 0
\(253\) 3.14512 0.197732
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.71999 9.90731i −0.356803 0.618001i 0.630622 0.776090i \(-0.282800\pi\)
−0.987425 + 0.158089i \(0.949467\pi\)
\(258\) 0 0
\(259\) 0.349015 0.328193i 0.0216868 0.0203929i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.01050 5.20222i −0.555612 0.320782i 0.195771 0.980650i \(-0.437279\pi\)
−0.751382 + 0.659867i \(0.770613\pi\)
\(264\) 0 0
\(265\) 27.5369i 1.69158i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.85382 8.40706i 0.295943 0.512588i −0.679261 0.733897i \(-0.737700\pi\)
0.975204 + 0.221309i \(0.0710329\pi\)
\(270\) 0 0
\(271\) 24.9184 14.3867i 1.51369 0.873928i 0.513816 0.857901i \(-0.328232\pi\)
0.999872 0.0160271i \(-0.00510181\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −46.5639 + 26.8837i −2.80791 + 1.62115i
\(276\) 0 0
\(277\) 8.56550 14.8359i 0.514651 0.891401i −0.485205 0.874401i \(-0.661255\pi\)
0.999855 0.0170007i \(-0.00541176\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.61233i 0.155838i −0.996960 0.0779191i \(-0.975172\pi\)
0.996960 0.0779191i \(-0.0248276\pi\)
\(282\) 0 0
\(283\) 2.20363 + 1.27226i 0.130992 + 0.0756283i 0.564064 0.825731i \(-0.309237\pi\)
−0.433072 + 0.901359i \(0.642570\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.77088 24.5294i −0.340644 1.44792i
\(288\) 0 0
\(289\) −17.0704 29.5668i −1.00414 1.73922i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.98621 0.291297 0.145649 0.989336i \(-0.453473\pi\)
0.145649 + 0.989336i \(0.453473\pi\)
\(294\) 0 0
\(295\) 39.5865 2.30481
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.218282 + 0.378076i 0.0126236 + 0.0218647i
\(300\) 0 0
\(301\) −1.38373 5.88160i −0.0797569 0.339010i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −36.6085 21.1359i −2.09619 1.21024i
\(306\) 0 0
\(307\) 0.688473i 0.0392932i −0.999807 0.0196466i \(-0.993746\pi\)
0.999807 0.0196466i \(-0.00625412\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.61579 7.99478i 0.261737 0.453342i −0.704966 0.709241i \(-0.749038\pi\)
0.966704 + 0.255898i \(0.0823712\pi\)
\(312\) 0 0
\(313\) −6.79944 + 3.92566i −0.384327 + 0.221891i −0.679699 0.733491i \(-0.737890\pi\)
0.295372 + 0.955382i \(0.404556\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.7913 8.53976i 0.830763 0.479641i −0.0233511 0.999727i \(-0.507434\pi\)
0.854114 + 0.520086i \(0.174100\pi\)
\(318\) 0 0
\(319\) 11.9601 20.7156i 0.669639 1.15985i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 34.6571i 1.92837i
\(324\) 0 0
\(325\) −6.46340 3.73164i −0.358525 0.206994i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.26536 + 5.89158i −0.345421 + 0.324813i
\(330\) 0 0
\(331\) −15.9973 27.7081i −0.879291 1.52298i −0.852120 0.523346i \(-0.824684\pi\)
−0.0271706 0.999631i \(-0.508650\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 43.1388 2.35692
\(336\) 0 0
\(337\) 25.6354 1.39645 0.698226 0.715877i \(-0.253973\pi\)
0.698226 + 0.715877i \(0.253973\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.0074 + 22.5294i 0.704389 + 1.22004i
\(342\) 0 0
\(343\) −11.8343 14.2460i −0.638992 0.769214i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.60640 + 3.23686i 0.300967 + 0.173764i 0.642877 0.765969i \(-0.277740\pi\)
−0.341910 + 0.939733i \(0.611074\pi\)
\(348\) 0 0
\(349\) 27.0147i 1.44606i 0.690815 + 0.723032i \(0.257252\pi\)
−0.690815 + 0.723032i \(0.742748\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.7745 + 27.3222i −0.839591 + 1.45421i 0.0506462 + 0.998717i \(0.483872\pi\)
−0.890237 + 0.455497i \(0.849461\pi\)
\(354\) 0 0
\(355\) 3.58793 2.07149i 0.190428 0.109943i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.82534 2.20856i 0.201894 0.116563i −0.395645 0.918404i \(-0.629479\pi\)
0.597538 + 0.801840i \(0.296146\pi\)
\(360\) 0 0
\(361\) 2.24320 3.88534i 0.118063 0.204491i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.89084i 0.0989709i
\(366\) 0 0
\(367\) −2.36455 1.36517i −0.123429 0.0712616i 0.437015 0.899454i \(-0.356036\pi\)
−0.560443 + 0.828193i \(0.689369\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.25364 17.4437i 0.272755 0.905630i
\(372\) 0 0
\(373\) 2.99871 + 5.19391i 0.155267 + 0.268931i 0.933156 0.359471i \(-0.117043\pi\)
−0.777889 + 0.628402i \(0.783709\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.32030 0.171004
\(378\) 0 0
\(379\) 16.7830 0.862083 0.431042 0.902332i \(-0.358146\pi\)
0.431042 + 0.902332i \(0.358146\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.53825 + 14.7887i 0.436284 + 0.755667i 0.997399 0.0720712i \(-0.0229609\pi\)
−0.561115 + 0.827738i \(0.689628\pi\)
\(384\) 0 0
\(385\) −50.3739 + 11.8512i −2.56729 + 0.603992i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −30.4364 17.5725i −1.54319 0.890959i −0.998635 0.0522323i \(-0.983366\pi\)
−0.544552 0.838727i \(-0.683300\pi\)
\(390\) 0 0
\(391\) 4.59873i 0.232568i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.3354 + 28.2937i −0.821922 + 1.42361i
\(396\) 0 0
\(397\) −3.74191 + 2.16039i −0.187801 + 0.108427i −0.590953 0.806706i \(-0.701248\pi\)
0.403152 + 0.915133i \(0.367915\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.6036 14.7822i 1.27858 0.738189i 0.301994 0.953310i \(-0.402348\pi\)
0.976587 + 0.215121i \(0.0690145\pi\)
\(402\) 0 0
\(403\) −1.80552 + 3.12725i −0.0899392 + 0.155779i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.885619i 0.0438985i
\(408\) 0 0
\(409\) 27.1261 + 15.6613i 1.34130 + 0.774401i 0.986998 0.160730i \(-0.0513849\pi\)
0.354303 + 0.935131i \(0.384718\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.0767 + 7.55253i 1.23394 + 0.371635i
\(414\) 0 0
\(415\) −5.06995 8.78141i −0.248874 0.431063i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.552696 −0.0270010 −0.0135005 0.999909i \(-0.504297\pi\)
−0.0135005 + 0.999909i \(0.504297\pi\)
\(420\) 0 0
\(421\) −23.2742 −1.13432 −0.567158 0.823609i \(-0.691957\pi\)
−0.567158 + 0.823609i \(0.691957\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 39.3088 + 68.0848i 1.90676 + 3.30260i
\(426\) 0 0
\(427\) −19.1578 20.3732i −0.927110 0.985930i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.7375 + 12.5501i 1.04706 + 0.604518i 0.921824 0.387609i \(-0.126699\pi\)
0.125233 + 0.992127i \(0.460032\pi\)
\(432\) 0 0
\(433\) 17.3795i 0.835204i −0.908630 0.417602i \(-0.862871\pi\)
0.908630 0.417602i \(-0.137129\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.55823 2.69894i 0.0745404 0.129108i
\(438\) 0 0
\(439\) −3.78895 + 2.18755i −0.180837 + 0.104406i −0.587686 0.809089i \(-0.699961\pi\)
0.406849 + 0.913495i \(0.366627\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.1887 11.6559i 0.959193 0.553790i 0.0632686 0.997997i \(-0.479848\pi\)
0.895925 + 0.444206i \(0.146514\pi\)
\(444\) 0 0
\(445\) 35.6326 61.7174i 1.68915 2.92569i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0524i 1.13510i 0.823338 + 0.567551i \(0.192109\pi\)
−0.823338 + 0.567551i \(0.807891\pi\)
\(450\) 0 0
\(451\) −40.3412 23.2910i −1.89959 1.09673i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.92076 5.23296i −0.230689 0.245325i
\(456\) 0 0
\(457\) 0.467757 + 0.810180i 0.0218808 + 0.0378986i 0.876758 0.480931i \(-0.159701\pi\)
−0.854878 + 0.518830i \(0.826368\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.93609 0.369621 0.184810 0.982774i \(-0.440833\pi\)
0.184810 + 0.982774i \(0.440833\pi\)
\(462\) 0 0
\(463\) −0.0963291 −0.00447679 −0.00223840 0.999997i \(-0.500713\pi\)
−0.00223840 + 0.999997i \(0.500713\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.6205 25.3234i −0.676555 1.17183i −0.976012 0.217718i \(-0.930139\pi\)
0.299456 0.954110i \(-0.403195\pi\)
\(468\) 0 0
\(469\) 27.3269 + 8.23026i 1.26184 + 0.380038i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.67294 5.58467i −0.444762 0.256784i
\(474\) 0 0
\(475\) 53.2775i 2.44454i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.93986 + 8.55609i −0.225708 + 0.390938i −0.956532 0.291629i \(-0.905803\pi\)
0.730824 + 0.682566i \(0.239136\pi\)
\(480\) 0 0
\(481\) 0.106461 0.0614650i 0.00485418 0.00280256i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.6346 6.13990i 0.482893 0.278799i
\(486\) 0 0
\(487\) 4.10907 7.11712i 0.186200 0.322507i −0.757780 0.652510i \(-0.773716\pi\)
0.943980 + 0.330002i \(0.107050\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.0806i 0.635450i 0.948183 + 0.317725i \(0.102919\pi\)
−0.948183 + 0.317725i \(0.897081\pi\)
\(492\) 0 0
\(493\) −30.2899 17.4879i −1.36419 0.787614i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.66804 0.627694i 0.119678 0.0281559i
\(498\) 0 0
\(499\) 8.08403 + 14.0019i 0.361891 + 0.626813i 0.988272 0.152704i \(-0.0487980\pi\)
−0.626381 + 0.779517i \(0.715465\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.8914 1.64491 0.822453 0.568834i \(-0.192605\pi\)
0.822453 + 0.568834i \(0.192605\pi\)
\(504\) 0 0
\(505\) 26.1269 1.16263
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.90414 + 13.6904i 0.350345 + 0.606815i 0.986310 0.164903i \(-0.0527311\pi\)
−0.635965 + 0.771718i \(0.719398\pi\)
\(510\) 0 0
\(511\) −0.360744 + 1.19778i −0.0159584 + 0.0529867i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −62.8825 36.3053i −2.77094 1.59980i
\(516\) 0 0
\(517\) 15.8982i 0.699203i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.71479 13.3624i 0.337991 0.585417i −0.646064 0.763283i \(-0.723586\pi\)
0.984055 + 0.177866i \(0.0569193\pi\)
\(522\) 0 0
\(523\) −27.0967 + 15.6443i −1.18486 + 0.684077i −0.957133 0.289649i \(-0.906461\pi\)
−0.227723 + 0.973726i \(0.573128\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.9421 19.0191i 1.43498 0.828486i
\(528\) 0 0
\(529\) −11.2932 + 19.5605i −0.491010 + 0.850455i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.46591i 0.280070i
\(534\) 0 0
\(535\) −30.0408 17.3441i −1.29878 0.749850i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −34.1712 2.10330i −1.47186 0.0905955i
\(540\) 0 0
\(541\) −2.65929 4.60603i −0.114332 0.198029i 0.803181 0.595736i \(-0.203139\pi\)
−0.917512 + 0.397707i \(0.869806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.69418 −0.0725708
\(546\) 0 0
\(547\) 14.0296 0.599864 0.299932 0.953961i \(-0.403036\pi\)
0.299932 + 0.953961i \(0.403036\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11.8512 20.5268i −0.504877 0.874473i
\(552\) 0 0
\(553\) −15.7459 + 14.8065i −0.669585 + 0.629638i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.06802 3.50337i −0.257110 0.148443i 0.365905 0.930652i \(-0.380759\pi\)
−0.623016 + 0.782209i \(0.714093\pi\)
\(558\) 0 0
\(559\) 1.55038i 0.0655743i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.5937 + 18.3488i −0.446471 + 0.773311i −0.998153 0.0607435i \(-0.980653\pi\)
0.551682 + 0.834054i \(0.313986\pi\)
\(564\) 0 0
\(565\) 34.9895 20.2012i 1.47202 0.849871i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.1180 15.6566i 1.13685 0.656358i 0.191198 0.981551i \(-0.438763\pi\)
0.945648 + 0.325193i \(0.105429\pi\)
\(570\) 0 0
\(571\) −11.5820 + 20.0606i −0.484690 + 0.839508i −0.999845 0.0175887i \(-0.994401\pi\)
0.515155 + 0.857097i \(0.327734\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.06952i 0.294819i
\(576\) 0 0
\(577\) 17.2908 + 9.98287i 0.719827 + 0.415592i 0.814689 0.579898i \(-0.196908\pi\)
−0.0948620 + 0.995490i \(0.530241\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.53627 6.53000i −0.0637354 0.270910i
\(582\) 0 0
\(583\) −16.8382 29.1646i −0.697368 1.20788i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.7290 −0.938127 −0.469063 0.883164i \(-0.655408\pi\)
−0.469063 + 0.883164i \(0.655408\pi\)
\(588\) 0 0
\(589\) 25.7777 1.06215
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.90166 + 17.1502i 0.406612 + 0.704273i 0.994508 0.104664i \(-0.0333767\pi\)
−0.587895 + 0.808937i \(0.700043\pi\)
\(594\) 0 0
\(595\) 17.3285 + 73.6557i 0.710401 + 3.01959i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.6917 7.90491i −0.559428 0.322986i 0.193488 0.981103i \(-0.438020\pi\)
−0.752916 + 0.658117i \(0.771353\pi\)
\(600\) 0 0
\(601\) 32.2987i 1.31749i 0.752366 + 0.658746i \(0.228913\pi\)
−0.752366 + 0.658746i \(0.771087\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −25.8353 + 44.7481i −1.05035 + 1.81927i
\(606\) 0 0
\(607\) 1.26070 0.727866i 0.0511703 0.0295432i −0.474197 0.880419i \(-0.657261\pi\)
0.525367 + 0.850876i \(0.323928\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.91113 + 1.10339i −0.0773161 + 0.0446385i
\(612\) 0 0
\(613\) −1.57946 + 2.73570i −0.0637936 + 0.110494i −0.896158 0.443735i \(-0.853653\pi\)
0.832365 + 0.554228i \(0.186987\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.7984i 1.15938i −0.814837 0.579691i \(-0.803173\pi\)
0.814837 0.579691i \(-0.196827\pi\)
\(618\) 0 0
\(619\) 20.3013 + 11.7210i 0.815979 + 0.471106i 0.849028 0.528348i \(-0.177188\pi\)
−0.0330487 + 0.999454i \(0.510522\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 34.3468 32.2977i 1.37608 1.29398i
\(624\) 0 0
\(625\) −20.4447 35.4112i −0.817787 1.41645i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.29493 −0.0516324
\(630\) 0 0
\(631\) 41.0358 1.63361 0.816804 0.576915i \(-0.195744\pi\)
0.816804 + 0.576915i \(0.195744\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.1935 43.6364i −0.999773 1.73166i
\(636\) 0 0
\(637\) −2.11876 4.25371i −0.0839484 0.168538i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.2162 7.63040i −0.522010 0.301383i 0.215747 0.976449i \(-0.430781\pi\)
−0.737757 + 0.675067i \(0.764115\pi\)
\(642\) 0 0
\(643\) 30.2829i 1.19424i 0.802151 + 0.597121i \(0.203689\pi\)
−0.802151 + 0.597121i \(0.796311\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.17732 + 5.50328i −0.124913 + 0.216356i −0.921699 0.387906i \(-0.873199\pi\)
0.796786 + 0.604262i \(0.206532\pi\)
\(648\) 0 0
\(649\) 41.9265 24.2063i 1.64576 0.950180i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.14653 + 1.23930i −0.0840002 + 0.0484975i −0.541412 0.840758i \(-0.682110\pi\)
0.457412 + 0.889255i \(0.348777\pi\)
\(654\) 0 0
\(655\) 13.4448 23.2870i 0.525331 0.909899i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.8651i 1.43606i 0.696011 + 0.718031i \(0.254956\pi\)
−0.696011 + 0.718031i \(0.745044\pi\)
\(660\) 0 0
\(661\) 16.8816 + 9.74661i 0.656619 + 0.379099i 0.790988 0.611832i \(-0.209567\pi\)
−0.134369 + 0.990931i \(0.542901\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14.7876 + 49.0992i −0.573437 + 1.90399i
\(666\) 0 0
\(667\) −1.57256 2.72375i −0.0608898 0.105464i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −51.6967 −1.99573
\(672\) 0 0
\(673\) −19.7560 −0.761538 −0.380769 0.924670i \(-0.624341\pi\)
−0.380769 + 0.924670i \(0.624341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.42478 7.66394i −0.170058 0.294549i 0.768382 0.639992i \(-0.221062\pi\)
−0.938440 + 0.345442i \(0.887729\pi\)
\(678\) 0 0
\(679\) 7.90807 1.86049i 0.303484 0.0713989i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.07247 + 1.19654i 0.0793008 + 0.0457843i 0.539126 0.842225i \(-0.318755\pi\)
−0.459825 + 0.888009i \(0.652088\pi\)
\(684\) 0 0
\(685\) 54.5299i 2.08348i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.33726 4.04826i 0.0890426 0.154226i
\(690\) 0 0
\(691\) −1.87166 + 1.08060i −0.0712013 + 0.0411081i −0.535178 0.844739i \(-0.679755\pi\)
0.463977 + 0.885847i \(0.346422\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −66.0454 + 38.1314i −2.50525 + 1.44640i
\(696\) 0 0
\(697\) −34.0556 + 58.9861i −1.28995 + 2.23426i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.7240i 1.23597i 0.786191 + 0.617984i \(0.212050\pi\)
−0.786191 + 0.617984i \(0.787950\pi\)
\(702\) 0 0
\(703\) −0.759980 0.438775i −0.0286632 0.0165487i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.5505 + 4.98463i 0.622445 + 0.187466i
\(708\) 0 0
\(709\) 16.7348 + 28.9856i 0.628490 + 1.08858i 0.987855 + 0.155380i \(0.0496601\pi\)
−0.359365 + 0.933197i \(0.617007\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.42051 0.128099
\(714\) 0 0
\(715\) −13.2785 −0.496588
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.2023 26.3312i −0.566952 0.981989i −0.996865 0.0791190i \(-0.974789\pi\)
0.429914 0.902870i \(-0.358544\pi\)
\(720\) 0 0
\(721\) −32.9074 34.9952i −1.22554 1.30329i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 46.5639 + 26.8837i 1.72934 + 0.998435i
\(726\) 0 0
\(727\) 12.4585i 0.462061i −0.972946 0.231031i \(-0.925790\pi\)
0.972946 0.231031i \(-0.0742098\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.16580 + 14.1436i −0.302023 + 0.523119i
\(732\) 0 0
\(733\) 2.77872 1.60430i 0.102634 0.0592560i −0.447804 0.894132i \(-0.647794\pi\)
0.550439 + 0.834876i \(0.314460\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45.6888 26.3785i 1.68297 0.971663i
\(738\) 0 0
\(739\) −3.11747 + 5.39962i −0.114678 + 0.198628i −0.917651 0.397387i \(-0.869917\pi\)
0.802973 + 0.596015i \(0.203250\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.5451i 1.63420i −0.576495 0.817101i \(-0.695580\pi\)
0.576495 0.817101i \(-0.304420\pi\)
\(744\) 0 0
\(745\) 57.3616 + 33.1177i 2.10157 + 1.21334i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15.7208 16.7182i −0.574427 0.610871i
\(750\) 0 0
\(751\) 8.74572 + 15.1480i 0.319136 + 0.552759i 0.980308 0.197475i \(-0.0632741\pi\)
−0.661172 + 0.750234i \(0.729941\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.9849 1.23684
\(756\) 0 0
\(757\) −25.5174 −0.927445 −0.463722 0.885981i \(-0.653486\pi\)
−0.463722 + 0.885981i \(0.653486\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.89391 + 15.4047i 0.322404 + 0.558420i 0.980984 0.194091i \(-0.0621757\pi\)
−0.658580 + 0.752511i \(0.728842\pi\)
\(762\) 0 0
\(763\) −1.07321 0.323225i −0.0388527 0.0117015i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.81970 + 3.36000i 0.210137 + 0.121323i
\(768\) 0 0
\(769\) 38.3951i 1.38456i 0.721627 + 0.692282i \(0.243394\pi\)
−0.721627 + 0.692282i \(0.756606\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.7588 23.8310i 0.494871 0.857142i −0.505111 0.863054i \(-0.668549\pi\)
0.999983 + 0.00591211i \(0.00188189\pi\)
\(774\) 0 0
\(775\) −50.6411 + 29.2376i −1.81908 + 1.05025i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −39.9737 + 23.0788i −1.43221 + 0.826884i
\(780\) 0 0
\(781\) 2.53335 4.38789i 0.0906503 0.157011i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 68.6094i 2.44877i
\(786\) 0 0
\(787\) −11.6948 6.75200i −0.416875 0.240683i 0.276864 0.960909i \(-0.410705\pi\)
−0.693739 + 0.720226i \(0.744038\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.0187 6.12128i 0.925120 0.217648i
\(792\) 0 0
\(793\) −3.58793 6.21448i −0.127411 0.220683i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32.1072 −1.13729 −0.568647 0.822582i \(-0.692533\pi\)
−0.568647 + 0.822582i \(0.692533\pi\)
\(798\) 0 0
\(799\) 23.2461 0.822386
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.15621 + 2.00261i 0.0408017 + 0.0706705i
\(804\) 0 0
\(805\) −1.96220 + 6.51509i −0.0691584 + 0.229627i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.84513 + 1.06529i 0.0648713 + 0.0374534i 0.532085 0.846691i \(-0.321409\pi\)
−0.467214 + 0.884145i \(0.654742\pi\)
\(810\) 0 0
\(811\) 18.7062i 0.656864i −0.944528 0.328432i \(-0.893480\pi\)
0.944528 0.328432i \(-0.106520\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 46.4731 80.4937i 1.62788 2.81957i
\(816\) 0 0
\(817\) −9.58481 + 5.53379i −0.335330 + 0.193603i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.6223 11.9063i 0.719724 0.415533i −0.0949272 0.995484i \(-0.530262\pi\)
0.814651 + 0.579951i \(0.196929\pi\)
\(822\) 0 0
\(823\) −3.91318 + 6.77782i −0.136405 + 0.236260i −0.926133 0.377197i \(-0.876888\pi\)
0.789728 + 0.613457i \(0.210221\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.94710i 0.206801i 0.994640 + 0.103400i \(0.0329723\pi\)
−0.994640 + 0.103400i \(0.967028\pi\)
\(828\) 0 0
\(829\) −10.5009 6.06269i −0.364711 0.210566i 0.306435 0.951892i \(-0.400864\pi\)
−0.671145 + 0.741326i \(0.734197\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.07540 + 49.9644i −0.106556 + 1.73116i
\(834\) 0 0
\(835\) 21.1327 + 36.6028i 0.731326 + 1.26669i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.5941 1.02170 0.510851 0.859669i \(-0.329330\pi\)
0.510851 + 0.859669i \(0.329330\pi\)
\(840\) 0 0
\(841\) 5.07972 0.175163
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25.0731 + 43.4279i 0.862542 + 1.49397i
\(846\) 0 0
\(847\) −24.9031 + 23.4174i −0.855680 + 0.804630i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.100844 0.0582221i −0.00345687 0.00199583i
\(852\) 0 0
\(853\) 5.00490i 0.171364i 0.996323 + 0.0856822i \(0.0273070\pi\)
−0.996323 + 0.0856822i \(0.972693\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.3412 + 38.6961i −0.763160 + 1.32183i 0.178053 + 0.984021i \(0.443020\pi\)
−0.941214 + 0.337812i \(0.890313\pi\)
\(858\) 0 0
\(859\) 17.4974 10.1021i 0.597003 0.344680i −0.170858 0.985296i \(-0.554654\pi\)
0.767862 + 0.640616i \(0.221321\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.2738 + 14.5919i −0.860331 + 0.496713i −0.864123 0.503280i \(-0.832126\pi\)
0.00379192 + 0.999993i \(0.498793\pi\)
\(864\) 0 0
\(865\) 0.370343 0.641453i 0.0125920 0.0218100i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 39.9549i 1.35538i
\(870\) 0 0
\(871\) 6.34193 + 3.66152i 0.214888 + 0.124066i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.5231 61.7308i −0.490969 2.08688i
\(876\) 0 0
\(877\) 4.27851 + 7.41060i 0.144475 + 0.250238i 0.929177 0.369635i \(-0.120517\pi\)
−0.784702 + 0.619873i \(0.787184\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.2255 0.883561 0.441781 0.897123i \(-0.354347\pi\)
0.441781 + 0.897123i \(0.354347\pi\)
\(882\) 0 0
\(883\) 49.3518 1.66082 0.830410 0.557153i \(-0.188106\pi\)
0.830410 + 0.557153i \(0.188106\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.96343 + 8.59691i 0.166656 + 0.288656i 0.937242 0.348680i \(-0.113370\pi\)
−0.770586 + 0.637336i \(0.780037\pi\)
\(888\) 0 0
\(889\) −7.63402 32.4487i −0.256037 1.08829i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.6428 + 7.87669i 0.456540 + 0.263583i
\(894\) 0 0
\(895\) 51.3114i 1.71515i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.0074 22.5294i 0.433820 0.751399i
\(900\) 0 0
\(901\) −42.6440 + 24.6205i −1.42068 + 0.820228i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −66.0454 + 38.1314i −2.19543 + 1.26753i
\(906\) 0 0
\(907\) 7.92790 13.7315i 0.263242 0.455948i −0.703860 0.710339i \(-0.748542\pi\)
0.967101 + 0.254391i \(0.0818750\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.46438i 0.247306i 0.992326 + 0.123653i \(0.0394610\pi\)
−0.992326 + 0.123653i \(0.960539\pi\)
\(912\) 0 0
\(913\) −10.7393 6.20034i −0.355419 0.205201i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9596 12.1865i 0.427965 0.402433i
\(918\) 0 0
\(919\) 1.70138 + 2.94688i 0.0561233 + 0.0972085i 0.892722 0.450608i \(-0.148793\pi\)
−0.836599 + 0.547816i \(0.815459\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.703293 0.0231492
\(924\) 0 0
\(925\) 1.99067 0.0654528
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.3809 40.4968i −0.767101 1.32866i −0.939128 0.343566i \(-0.888365\pi\)
0.172027 0.985092i \(-0.444968\pi\)
\(930\) 0 0
\(931\) −18.7348 + 28.2814i −0.614010 + 0.926886i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 121.135 + 69.9373i 3.96153 + 2.28719i
\(936\) 0 0
\(937\) 14.2702i 0.466187i 0.972454 + 0.233093i \(0.0748848\pi\)
−0.972454 + 0.233093i \(0.925115\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.70002 4.67658i 0.0880183 0.152452i −0.818655 0.574285i \(-0.805280\pi\)
0.906673 + 0.421833i \(0.138613\pi\)
\(942\) 0 0
\(943\) −5.30420 + 3.06238i −0.172729 + 0.0997249i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −40.0390 + 23.1165i −1.30109 + 0.751186i −0.980591 0.196062i \(-0.937184\pi\)
−0.320501 + 0.947248i \(0.603851\pi\)
\(948\) 0 0
\(949\) −0.160490 + 0.277976i −0.00520971 + 0.00902349i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.50095i 0.275373i −0.990476 0.137686i \(-0.956033\pi\)
0.990476 0.137686i \(-0.0439666\pi\)
\(954\) 0 0
\(955\) 31.8899 + 18.4117i 1.03193 + 0.595787i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.4035 + 34.5429i −0.335947 + 1.11545i
\(960\) 0 0
\(961\) −1.35368 2.34464i −0.0436671 0.0756337i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 25.5455 0.822339
\(966\) 0 0
\(967\) 19.4198 0.624497 0.312249 0.950000i \(-0.398918\pi\)
0.312249 + 0.950000i \(0.398918\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.34427 7.52449i −0.139414 0.241472i 0.787861 0.615853i \(-0.211189\pi\)
−0.927275 + 0.374381i \(0.877855\pi\)
\(972\) 0 0
\(973\) −49.1124 + 11.5544i −1.57447 + 0.370417i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.2821 + 12.8646i 0.712869 + 0.411575i 0.812122 0.583487i \(-0.198312\pi\)
−0.0992537 + 0.995062i \(0.531646\pi\)
\(978\) 0 0
\(979\) 87.1542i 2.78546i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.51952 9.56009i 0.176045 0.304920i −0.764477 0.644651i \(-0.777003\pi\)
0.940523 + 0.339731i \(0.110336\pi\)
\(984\) 0 0
\(985\) 10.2212 5.90122i 0.325675 0.188028i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.27183 + 0.734292i −0.0404419 + 0.0233491i
\(990\) 0 0
\(991\) −7.68283 + 13.3070i −0.244053 + 0.422712i −0.961865 0.273525i \(-0.911810\pi\)
0.717812 + 0.696237i \(0.245144\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.2066i 0.355273i
\(996\) 0 0
\(997\) −54.1503 31.2637i −1.71496 0.990132i −0.927549 0.373702i \(-0.878088\pi\)
−0.787410 0.616430i \(-0.788578\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bl.b.1025.8 yes 16
3.2 odd 2 inner 1512.2.bl.b.1025.1 yes 16
7.5 odd 6 inner 1512.2.bl.b.593.1 16
21.5 even 6 inner 1512.2.bl.b.593.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.bl.b.593.1 16 7.5 odd 6 inner
1512.2.bl.b.593.8 yes 16 21.5 even 6 inner
1512.2.bl.b.1025.1 yes 16 3.2 odd 2 inner
1512.2.bl.b.1025.8 yes 16 1.1 even 1 trivial