L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.389459178\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.389459178\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.534383599650435449440656322393, −8.776029674428117082901783928761, −7.894102909257364118341306163952, −7.38377621790393367514222971932, −6.22370210577637424572982964102, −5.63176117984537032512651316972, −4.91208139177738474213041289021, −3.77768208479580996045367770927, −3.10484770331262975196641624269, −1.06453178636750602366739496553,
1.72010733574829837955432402525, 2.59959736688575163844704486984, 3.47038124096828908783557826671, 4.44472354494329784016678734980, 5.56229850038318806529436444598, 6.34903460198569765171944728784, 6.76646467344933401893454773905, 8.335262039162833501290609835035, 9.212483071319602567031243023068, 9.638638672057802254118483382762