Properties

Label 2-1512-504.13-c0-0-3
Degree $2$
Conductor $1512$
Sign $0.984 - 0.173i$
Analytic cond. $0.754586$
Root an. cond. $0.868669$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯
L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $0.984 - 0.173i$
Analytic conductor: \(0.754586\)
Root analytic conductor: \(0.868669\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1512} (685, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :0),\ 0.984 - 0.173i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.389459178\)
\(L(\frac12)\) \(\approx\) \(1.389459178\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 \)
7 \( 1 + (0.5 + 0.866i)T \)
good5 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T^{2} \)
13 \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T + T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 - 0.866i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 - 0.866i)T^{2} \)
47 \( 1 + (0.5 - 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.534383599650435449440656322393, −8.776029674428117082901783928761, −7.894102909257364118341306163952, −7.38377621790393367514222971932, −6.22370210577637424572982964102, −5.63176117984537032512651316972, −4.91208139177738474213041289021, −3.77768208479580996045367770927, −3.10484770331262975196641624269, −1.06453178636750602366739496553, 1.72010733574829837955432402525, 2.59959736688575163844704486984, 3.47038124096828908783557826671, 4.44472354494329784016678734980, 5.56229850038318806529436444598, 6.34903460198569765171944728784, 6.76646467344933401893454773905, 8.335262039162833501290609835035, 9.212483071319602567031243023068, 9.638638672057802254118483382762

Graph of the $Z$-function along the critical line