L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + 1.99·26-s + 0.999·28-s + (0.499 − 0.866i)32-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)(0.984−0.173i)Λ(1−s)
Λ(s)=(=(1512s/2ΓC(s)L(s)(0.984−0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
0.984−0.173i
|
Analytic conductor: |
0.754586 |
Root analytic conductor: |
0.868669 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1512(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :0), 0.984−0.173i)
|
Particular Values
L(21) |
≈ |
1.389459178 |
L(21) |
≈ |
1.389459178 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1 |
| 7 | 1+(0.5+0.866i)T |
good | 5 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T+T2 |
| 23 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1−T+T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.534383599650435449440656322393, −8.776029674428117082901783928761, −7.894102909257364118341306163952, −7.38377621790393367514222971932, −6.22370210577637424572982964102, −5.63176117984537032512651316972, −4.91208139177738474213041289021, −3.77768208479580996045367770927, −3.10484770331262975196641624269, −1.06453178636750602366739496553,
1.72010733574829837955432402525, 2.59959736688575163844704486984, 3.47038124096828908783557826671, 4.44472354494329784016678734980, 5.56229850038318806529436444598, 6.34903460198569765171944728784, 6.76646467344933401893454773905, 8.335262039162833501290609835035, 9.212483071319602567031243023068, 9.638638672057802254118483382762