L(s) = 1 | + (−0.320 + 0.320i)2-s + 7.79i·4-s + (2.81 − 6.79i)5-s + (6.62 + 15.9i)7-s + (−5.05 − 5.05i)8-s + (1.27 + 3.07i)10-s + (0.780 − 0.323i)11-s + 29.3i·13-s + (−7.23 − 2.99i)14-s − 59.1·16-s + (14.8 + 68.5i)17-s + (−13.1 + 13.1i)19-s + (52.9 + 21.9i)20-s + (−0.146 + 0.353i)22-s + (−111. + 46.0i)23-s + ⋯ |
L(s) = 1 | + (−0.113 + 0.113i)2-s + 0.974i·4-s + (0.251 − 0.607i)5-s + (0.357 + 0.863i)7-s + (−0.223 − 0.223i)8-s + (0.0403 + 0.0972i)10-s + (0.0213 − 0.00885i)11-s + 0.626i·13-s + (−0.138 − 0.0572i)14-s − 0.923·16-s + (0.211 + 0.977i)17-s + (−0.158 + 0.158i)19-s + (0.592 + 0.245i)20-s + (−0.00141 + 0.00342i)22-s + (−1.00 + 0.417i)23-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(−0.256−0.966i)Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)(−0.256−0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
−0.256−0.966i
|
Analytic conductor: |
9.02729 |
Root analytic conductor: |
3.00454 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :3/2), −0.256−0.966i)
|
Particular Values
L(2) |
≈ |
0.869812+1.13127i |
L(21) |
≈ |
0.869812+1.13127i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+(−14.8−68.5i)T |
good | 2 | 1+(0.320−0.320i)T−8iT2 |
| 5 | 1+(−2.81+6.79i)T+(−88.3−88.3i)T2 |
| 7 | 1+(−6.62−15.9i)T+(−242.+242.i)T2 |
| 11 | 1+(−0.780+0.323i)T+(941.−941.i)T2 |
| 13 | 1−29.3iT−2.19e3T2 |
| 19 | 1+(13.1−13.1i)T−6.85e3iT2 |
| 23 | 1+(111.−46.0i)T+(8.60e3−8.60e3i)T2 |
| 29 | 1+(76.9−185.i)T+(−1.72e4−1.72e4i)T2 |
| 31 | 1+(−98.5−40.8i)T+(2.10e4+2.10e4i)T2 |
| 37 | 1+(64.8+26.8i)T+(3.58e4+3.58e4i)T2 |
| 41 | 1+(73.4+177.i)T+(−4.87e4+4.87e4i)T2 |
| 43 | 1+(−359.−359.i)T+7.95e4iT2 |
| 47 | 1+235.iT−1.03e5T2 |
| 53 | 1+(−36.0+36.0i)T−1.48e5iT2 |
| 59 | 1+(106.+106.i)T+2.05e5iT2 |
| 61 | 1+(355.+857.i)T+(−1.60e5+1.60e5i)T2 |
| 67 | 1−158.T+3.00e5T2 |
| 71 | 1+(−536.−222.i)T+(2.53e5+2.53e5i)T2 |
| 73 | 1+(−186.+449.i)T+(−2.75e5−2.75e5i)T2 |
| 79 | 1+(−1.02e3+425.i)T+(3.48e5−3.48e5i)T2 |
| 83 | 1+(−1.03e3+1.03e3i)T−5.71e5iT2 |
| 89 | 1−1.04e3iT−7.04e5T2 |
| 97 | 1+(195.−473.i)T+(−6.45e5−6.45e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.54791668679482442441369123405, −12.11319755347895922517323388641, −10.93788168303943406857767352817, −9.384147806884856907817501491562, −8.663306535570823758203376571460, −7.77931031819678472184006285345, −6.37280215354431856232718180577, −5.05568252820361594017861009470, −3.66015506213464349738784065603, −1.94708982368249383095366849493,
0.71937640971803849520897218072, 2.48327013777258260344406148047, 4.35899709980407091685709922895, 5.69589381794241845904240362942, 6.78200447609114429878267908391, 7.937005338184842280296721127564, 9.434242451142644248645391316593, 10.32782285260299049917756563100, 10.90156904884865161989783171430, 12.02985562927873270454337056644