Properties

Label 2-1530-5.4-c1-0-17
Degree $2$
Conductor $1530$
Sign $-0.662 - 0.749i$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + (1.48 + 1.67i)5-s + 3.35i·7-s i·8-s + (−1.67 + 1.48i)10-s + 4·11-s − 0.387i·13-s − 3.35·14-s + 16-s + i·17-s + 5.92·19-s + (−1.48 − 1.67i)20-s + 4i·22-s + 1.35i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + (0.662 + 0.749i)5-s + 1.26i·7-s − 0.353i·8-s + (−0.529 + 0.468i)10-s + 1.20·11-s − 0.107i·13-s − 0.895·14-s + 0.250·16-s + 0.242i·17-s + 1.35·19-s + (−0.331 − 0.374i)20-s + 0.852i·22-s + 0.281i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-0.662 - 0.749i$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1530} (919, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ -0.662 - 0.749i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.937742821\)
\(L(\frac12)\) \(\approx\) \(1.937742821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 + (-1.48 - 1.67i)T \)
17 \( 1 - iT \)
good7 \( 1 - 3.35iT - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 0.387iT - 13T^{2} \)
19 \( 1 - 5.92T + 19T^{2} \)
23 \( 1 - 1.35iT - 23T^{2} \)
29 \( 1 + 2.96T + 29T^{2} \)
31 \( 1 - 5.35T + 31T^{2} \)
37 \( 1 + 1.03iT - 37T^{2} \)
41 \( 1 + 6.31T + 41T^{2} \)
43 \( 1 + 4.38iT - 43T^{2} \)
47 \( 1 - 6.70iT - 47T^{2} \)
53 \( 1 + 11.1iT - 53T^{2} \)
59 \( 1 + 9.53T + 59T^{2} \)
61 \( 1 - 14.0T + 61T^{2} \)
67 \( 1 + 7.61iT - 67T^{2} \)
71 \( 1 + 13.2T + 71T^{2} \)
73 \( 1 - 11.6iT - 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 - 5.92iT - 83T^{2} \)
89 \( 1 - 10.7T + 89T^{2} \)
97 \( 1 - 17.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527399603757999687257326440654, −9.040347504292444863460320207989, −8.165400000184640037247434709725, −7.15877991994986797995821331516, −6.46997230474933666714812495463, −5.76231668060962214573138593921, −5.13729695385954344441267656852, −3.76422359545536209378676651322, −2.81513284846855175162324334167, −1.56881760973680539037186930177, 0.860597607670620124714320757569, 1.60463336513277830042178161428, 3.08776856048981778753720868911, 4.09889530082656828826569121463, 4.73702336966055990540779957230, 5.77482879594730413168279381917, 6.76114292991961032536968238200, 7.60548849602754104534632598415, 8.641473318806026633229498740686, 9.330110916768530596754491148649

Graph of the $Z$-function along the critical line