L(s) = 1 | + i·2-s − 4-s + (1.48 + 1.67i)5-s + 3.35i·7-s − i·8-s + (−1.67 + 1.48i)10-s + 4·11-s − 0.387i·13-s − 3.35·14-s + 16-s + i·17-s + 5.92·19-s + (−1.48 − 1.67i)20-s + 4i·22-s + 1.35i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.662 + 0.749i)5-s + 1.26i·7-s − 0.353i·8-s + (−0.529 + 0.468i)10-s + 1.20·11-s − 0.107i·13-s − 0.895·14-s + 0.250·16-s + 0.242i·17-s + 1.35·19-s + (−0.331 − 0.374i)20-s + 0.852i·22-s + 0.281i·23-s + ⋯ |
Λ(s)=(=(1530s/2ΓC(s)L(s)(−0.662−0.749i)Λ(2−s)
Λ(s)=(=(1530s/2ΓC(s+1/2)L(s)(−0.662−0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
1530
= 2⋅32⋅5⋅17
|
Sign: |
−0.662−0.749i
|
Analytic conductor: |
12.2171 |
Root analytic conductor: |
3.49529 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1530(919,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1530, ( :1/2), −0.662−0.749i)
|
Particular Values
L(1) |
≈ |
1.937742821 |
L(21) |
≈ |
1.937742821 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1+(−1.48−1.67i)T |
| 17 | 1−iT |
good | 7 | 1−3.35iT−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1+0.387iT−13T2 |
| 19 | 1−5.92T+19T2 |
| 23 | 1−1.35iT−23T2 |
| 29 | 1+2.96T+29T2 |
| 31 | 1−5.35T+31T2 |
| 37 | 1+1.03iT−37T2 |
| 41 | 1+6.31T+41T2 |
| 43 | 1+4.38iT−43T2 |
| 47 | 1−6.70iT−47T2 |
| 53 | 1+11.1iT−53T2 |
| 59 | 1+9.53T+59T2 |
| 61 | 1−14.0T+61T2 |
| 67 | 1+7.61iT−67T2 |
| 71 | 1+13.2T+71T2 |
| 73 | 1−11.6iT−73T2 |
| 79 | 1+14.4T+79T2 |
| 83 | 1−5.92iT−83T2 |
| 89 | 1−10.7T+89T2 |
| 97 | 1−17.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.527399603757999687257326440654, −9.040347504292444863460320207989, −8.165400000184640037247434709725, −7.15877991994986797995821331516, −6.46997230474933666714812495463, −5.76231668060962214573138593921, −5.13729695385954344441267656852, −3.76422359545536209378676651322, −2.81513284846855175162324334167, −1.56881760973680539037186930177,
0.860597607670620124714320757569, 1.60463336513277830042178161428, 3.08776856048981778753720868911, 4.09889530082656828826569121463, 4.73702336966055990540779957230, 5.77482879594730413168279381917, 6.76114292991961032536968238200, 7.60548849602754104534632598415, 8.641473318806026633229498740686, 9.330110916768530596754491148649