L(s) = 1 | + (−1.11 − 0.866i)2-s + (1.70 − 0.306i)3-s + (0.500 + 1.93i)4-s − 2.09i·5-s + (−2.17 − 1.13i)6-s + 0.613i·7-s + (1.11 − 2.59i)8-s + (2.81 − 1.04i)9-s + (−1.81 + 2.33i)10-s + (1.44 + 3.14i)12-s + 13-s + (0.531 − 0.686i)14-s + (−0.641 − 3.56i)15-s + (−3.5 + 1.93i)16-s + 2.09i·17-s + (−4.04 − 1.26i)18-s + ⋯ |
L(s) = 1 | + (−0.790 − 0.612i)2-s + (0.984 − 0.177i)3-s + (0.250 + 0.968i)4-s − 0.935i·5-s + (−0.886 − 0.462i)6-s + 0.231i·7-s + (0.395 − 0.918i)8-s + (0.937 − 0.348i)9-s + (−0.572 + 0.739i)10-s + (0.417 + 0.908i)12-s + 0.277·13-s + (0.142 − 0.183i)14-s + (−0.165 − 0.920i)15-s + (−0.875 + 0.484i)16-s + 0.507i·17-s + (−0.954 − 0.298i)18-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.417+0.908i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.417+0.908i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.417+0.908i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.417+0.908i)
|
Particular Values
L(1) |
≈ |
0.898169−0.575724i |
L(21) |
≈ |
0.898169−0.575724i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.11+0.866i)T |
| 3 | 1+(−1.70+0.306i)T |
| 13 | 1−T |
good | 5 | 1+2.09iT−5T2 |
| 7 | 1−0.613iT−7T2 |
| 11 | 1+11T2 |
| 17 | 1−2.09iT−17T2 |
| 19 | 1+5.29iT−19T2 |
| 23 | 1+6.81T+23T2 |
| 29 | 1−6.92iT−29T2 |
| 31 | 1−5.29iT−31T2 |
| 37 | 1+5.62T+37T2 |
| 41 | 1−11.1iT−41T2 |
| 43 | 1−11.1iT−43T2 |
| 47 | 1+3.40T+47T2 |
| 53 | 1+11.1iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+5.29iT−67T2 |
| 71 | 1+3.40T+71T2 |
| 73 | 1+13.2T+73T2 |
| 79 | 1+6.51iT−79T2 |
| 83 | 1−13.6T+83T2 |
| 89 | 1+2.74iT−89T2 |
| 97 | 1+5.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.76247590744069376185522783374, −11.86663565673852971356491951120, −10.54431261237114090935999956095, −9.449227739613737767024573117678, −8.707058611912045298565740467227, −8.033983999884523542465872988676, −6.72177548097214016342181970540, −4.59374183235862258100938171323, −3.15550880332309876798858489781, −1.55972770750412420638039260477,
2.22317239066231341118762626536, 3.93727542248255481804512273053, 5.86186181935852707966131976504, 7.12640616153609286378873430152, 7.87499901376151318959768612173, 8.927793488187041543519465444116, 10.07177806289127950495129378163, 10.54736388187699643719279342177, 11.96848152711580845856055102844, 13.76620463784534113776377168119