L(s) = 1 | + (−1.11 − 0.866i)2-s + (1.70 − 0.306i)3-s + (0.500 + 1.93i)4-s − 2.09i·5-s + (−2.17 − 1.13i)6-s + 0.613i·7-s + (1.11 − 2.59i)8-s + (2.81 − 1.04i)9-s + (−1.81 + 2.33i)10-s + (1.44 + 3.14i)12-s + 13-s + (0.531 − 0.686i)14-s + (−0.641 − 3.56i)15-s + (−3.5 + 1.93i)16-s + 2.09i·17-s + (−4.04 − 1.26i)18-s + ⋯ |
L(s) = 1 | + (−0.790 − 0.612i)2-s + (0.984 − 0.177i)3-s + (0.250 + 0.968i)4-s − 0.935i·5-s + (−0.886 − 0.462i)6-s + 0.231i·7-s + (0.395 − 0.918i)8-s + (0.937 − 0.348i)9-s + (−0.572 + 0.739i)10-s + (0.417 + 0.908i)12-s + 0.277·13-s + (0.142 − 0.183i)14-s + (−0.165 − 0.920i)15-s + (−0.875 + 0.484i)16-s + 0.507i·17-s + (−0.954 − 0.298i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.417 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.417 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.898169 - 0.575724i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.898169 - 0.575724i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.11 + 0.866i)T \) |
| 3 | \( 1 + (-1.70 + 0.306i)T \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + 2.09iT - 5T^{2} \) |
| 7 | \( 1 - 0.613iT - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 17 | \( 1 - 2.09iT - 17T^{2} \) |
| 19 | \( 1 + 5.29iT - 19T^{2} \) |
| 23 | \( 1 + 6.81T + 23T^{2} \) |
| 29 | \( 1 - 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 5.29iT - 31T^{2} \) |
| 37 | \( 1 + 5.62T + 37T^{2} \) |
| 41 | \( 1 - 11.1iT - 41T^{2} \) |
| 43 | \( 1 - 11.1iT - 43T^{2} \) |
| 47 | \( 1 + 3.40T + 47T^{2} \) |
| 53 | \( 1 + 11.1iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 5.29iT - 67T^{2} \) |
| 71 | \( 1 + 3.40T + 71T^{2} \) |
| 73 | \( 1 + 13.2T + 73T^{2} \) |
| 79 | \( 1 + 6.51iT - 79T^{2} \) |
| 83 | \( 1 - 13.6T + 83T^{2} \) |
| 89 | \( 1 + 2.74iT - 89T^{2} \) |
| 97 | \( 1 + 5.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76247590744069376185522783374, −11.86663565673852971356491951120, −10.54431261237114090935999956095, −9.449227739613737767024573117678, −8.707058611912045298565740467227, −8.033983999884523542465872988676, −6.72177548097214016342181970540, −4.59374183235862258100938171323, −3.15550880332309876798858489781, −1.55972770750412420638039260477,
2.22317239066231341118762626536, 3.93727542248255481804512273053, 5.86186181935852707966131976504, 7.12640616153609286378873430152, 7.87499901376151318959768612173, 8.927793488187041543519465444116, 10.07177806289127950495129378163, 10.54736388187699643719279342177, 11.96848152711580845856055102844, 13.76620463784534113776377168119