L(s) = 1 | + (1.11 + 0.866i)2-s + (0.586 − 1.62i)3-s + (0.500 + 1.93i)4-s − 3.82i·5-s + (2.06 − 1.31i)6-s + 3.25i·7-s + (−1.11 + 2.59i)8-s + (−2.31 − 1.91i)9-s + (3.31 − 4.27i)10-s + (3.44 + 0.321i)12-s + 13-s + (−2.82 + 3.64i)14-s + (−6.23 − 2.24i)15-s + (−3.5 + 1.93i)16-s + 3.82i·17-s + (−0.928 − 4.13i)18-s + ⋯ |
L(s) = 1 | + (0.790 + 0.612i)2-s + (0.338 − 0.940i)3-s + (0.250 + 0.968i)4-s − 1.71i·5-s + (0.843 − 0.536i)6-s + 1.23i·7-s + (−0.395 + 0.918i)8-s + (−0.770 − 0.637i)9-s + (1.04 − 1.35i)10-s + (0.995 + 0.0927i)12-s + 0.277·13-s + (−0.754 + 0.973i)14-s + (−1.60 − 0.579i)15-s + (−0.875 + 0.484i)16-s + 0.927i·17-s + (−0.218 − 0.975i)18-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.995+0.0927i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.995+0.0927i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.995+0.0927i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.995+0.0927i)
|
Particular Values
L(1) |
≈ |
1.75820−0.0816774i |
L(21) |
≈ |
1.75820−0.0816774i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.11−0.866i)T |
| 3 | 1+(−0.586+1.62i)T |
| 13 | 1−T |
good | 5 | 1+3.82iT−5T2 |
| 7 | 1−3.25iT−7T2 |
| 11 | 1+11T2 |
| 17 | 1−3.82iT−17T2 |
| 19 | 1−5.29iT−19T2 |
| 23 | 1+2.34T+23T2 |
| 29 | 1+6.92iT−29T2 |
| 31 | 1+5.29iT−31T2 |
| 37 | 1−4.62T+37T2 |
| 41 | 1−0.719iT−41T2 |
| 43 | 1+7.32iT−43T2 |
| 47 | 1+1.17T+47T2 |
| 53 | 1+0.719iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−5.29iT−67T2 |
| 71 | 1+1.17T+71T2 |
| 73 | 1−7.24T+73T2 |
| 79 | 1+1.22iT−79T2 |
| 83 | 1−4.69T+83T2 |
| 89 | 1−14.5iT−89T2 |
| 97 | 1−15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.91356696851178288505864338183, −12.26061510270211812766745835562, −11.73329766225640396738675509262, −9.333414580402539154643540154145, −8.369000663485634391513115533095, −7.964498364205499229963460785611, −6.10669187462974166608575654638, −5.56847037861222249784840693986, −4.01421201245683101786059422187, −2.05868639853871954857846462661,
2.77878981890764554380270789862, 3.63137557525668226292285310873, 4.84388369322217865405670124977, 6.47253845551160775631889560701, 7.40565288617832594864250603661, 9.366696825054488723033336265198, 10.36742057514727639479689525036, 10.84187856177014997023355865548, 11.54236834620042240545290466360, 13.32258018615220907837873379814