L(s) = 1 | + (0.707 + 1.22i)2-s + (−1.72 + 0.178i)3-s + (−0.999 + 1.73i)4-s + 2.23i·5-s + (−1.43 − 1.98i)6-s + (−2.73 − 1.58i)7-s − 2.82·8-s + (2.93 − 0.614i)9-s + (−2.73 + 1.58i)10-s + (2.12 + 3.67i)11-s + (1.41 − 3.16i)12-s + (−3.5 + 0.866i)13-s − 4.47i·14-s + (−0.398 − 3.85i)15-s + (−2.00 − 3.46i)16-s + (1.93 + 1.11i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)2-s + (−0.994 + 0.102i)3-s + (−0.499 + 0.866i)4-s + 0.999i·5-s + (−0.586 − 0.809i)6-s + (−1.03 − 0.597i)7-s − 0.999·8-s + (0.978 − 0.204i)9-s + (−0.866 + 0.500i)10-s + (0.639 + 1.10i)11-s + (0.408 − 0.912i)12-s + (−0.970 + 0.240i)13-s − 1.19i·14-s + (−0.102 − 0.994i)15-s + (−0.500 − 0.866i)16-s + (0.469 + 0.271i)17-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(−0.907−0.419i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(−0.907−0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
−0.907−0.419i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), −0.907−0.419i)
|
Particular Values
L(1) |
≈ |
0.180213+0.818649i |
L(21) |
≈ |
0.180213+0.818649i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−1.22i)T |
| 3 | 1+(1.72−0.178i)T |
| 13 | 1+(3.5−0.866i)T |
good | 5 | 1−2.23iT−5T2 |
| 7 | 1+(2.73+1.58i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.12−3.67i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.93−1.11i)T+(8.5+14.7i)T2 |
| 19 | 1+(−5.47−3.16i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.41−2.44i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−5.80+3.35i)T+(14.5−25.1i)T2 |
| 31 | 1+3.16iT−31T2 |
| 37 | 1+(0.5+0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(9.68−5.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.73−1.58i)T+(21.5+37.2i)T2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1+2.23iT−53T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(0.5−0.866i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.47−3.16i)T+(33.5−58.0i)T2 |
| 71 | 1+(1.41−2.44i)T+(−35.5−61.4i)T2 |
| 73 | 1+3T+73T2 |
| 79 | 1+12.6iT−79T2 |
| 83 | 1−9.89T+83T2 |
| 89 | 1+(3.87−2.23i)T+(44.5−77.0i)T2 |
| 97 | 1+(−8+13.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.41689762235597094771924293875, −12.33530472273834310787695503905, −11.72012451165303557408384715027, −10.09991823742183288136919979510, −9.670590888379472286760873913929, −7.44339454142121572632951242881, −6.94143386963254968350406030603, −6.04508300965237779054165359083, −4.65156705004792126543715859350, −3.39308774681080973759350447726,
0.821068812612578224845769304164, 3.14753407433093125746151939490, 4.85659907882108061838096849537, 5.58374306567673702825515917550, 6.76323390967179705387764369362, 8.822026341216631218685880451010, 9.617324630957235483079609688916, 10.66353094055424409888938575821, 12.00167287587216319765346794641, 12.17859895067792940895915774764