L(s) = 1 | + (0.707 + 1.22i)2-s + (−1.72 + 0.178i)3-s + (−0.999 + 1.73i)4-s + 2.23i·5-s + (−1.43 − 1.98i)6-s + (−2.73 − 1.58i)7-s − 2.82·8-s + (2.93 − 0.614i)9-s + (−2.73 + 1.58i)10-s + (2.12 + 3.67i)11-s + (1.41 − 3.16i)12-s + (−3.5 + 0.866i)13-s − 4.47i·14-s + (−0.398 − 3.85i)15-s + (−2.00 − 3.46i)16-s + (1.93 + 1.11i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)2-s + (−0.994 + 0.102i)3-s + (−0.499 + 0.866i)4-s + 0.999i·5-s + (−0.586 − 0.809i)6-s + (−1.03 − 0.597i)7-s − 0.999·8-s + (0.978 − 0.204i)9-s + (−0.866 + 0.500i)10-s + (0.639 + 1.10i)11-s + (0.408 − 0.912i)12-s + (−0.970 + 0.240i)13-s − 1.19i·14-s + (−0.102 − 0.994i)15-s + (−0.500 − 0.866i)16-s + (0.469 + 0.271i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 - 0.419i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.907 - 0.419i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.180213 + 0.818649i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.180213 + 0.818649i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 1.22i)T \) |
| 3 | \( 1 + (1.72 - 0.178i)T \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
good | 5 | \( 1 - 2.23iT - 5T^{2} \) |
| 7 | \( 1 + (2.73 + 1.58i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.12 - 3.67i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.93 - 1.11i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.47 - 3.16i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.41 - 2.44i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.80 + 3.35i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.16iT - 31T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (9.68 - 5.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.73 - 1.58i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + 2.23iT - 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.47 - 3.16i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.41 - 2.44i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3T + 73T^{2} \) |
| 79 | \( 1 + 12.6iT - 79T^{2} \) |
| 83 | \( 1 - 9.89T + 83T^{2} \) |
| 89 | \( 1 + (3.87 - 2.23i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8 + 13.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.41689762235597094771924293875, −12.33530472273834310787695503905, −11.72012451165303557408384715027, −10.09991823742183288136919979510, −9.670590888379472286760873913929, −7.44339454142121572632951242881, −6.94143386963254968350406030603, −6.04508300965237779054165359083, −4.65156705004792126543715859350, −3.39308774681080973759350447726,
0.821068812612578224845769304164, 3.14753407433093125746151939490, 4.85659907882108061838096849537, 5.58374306567673702825515917550, 6.76323390967179705387764369362, 8.822026341216631218685880451010, 9.617324630957235483079609688916, 10.66353094055424409888938575821, 12.00167287587216319765346794641, 12.17859895067792940895915774764