L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1 + 1.73i)19-s − 0.999·21-s + 25-s + 0.999·27-s − 31-s + (−1 − 1.73i)37-s + 0.999·39-s + (0.5 − 0.866i)43-s + 1.99·57-s + (0.5 − 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1 + 1.73i)19-s − 0.999·21-s + 25-s + 0.999·27-s − 31-s + (−1 − 1.73i)37-s + 0.999·39-s + (0.5 − 0.866i)43-s + 1.99·57-s + (0.5 − 0.866i)61-s + (0.499 + 0.866i)63-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.711+0.702i)Λ(1−s)
Λ(s)=(=(156s/2ΓC(s)L(s)(0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.711+0.702i
|
Analytic conductor: |
0.0778541 |
Root analytic conductor: |
0.279023 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :0), 0.711+0.702i)
|
Particular Values
L(21) |
≈ |
0.5748867328 |
L(21) |
≈ |
0.5748867328 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5+0.866i)T |
| 13 | 1+(0.5−0.866i)T |
good | 5 | 1−T2 |
| 7 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+T+T2 |
| 37 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+T+T2 |
| 79 | 1+T+T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.87467162212949865026756229537, −12.19828706702413409649508990299, −11.07231596751651044830586872506, −10.34906402372767019976987561544, −8.761415698778100303896616633042, −7.61222166988859049414115298574, −6.82635072436709119164717233769, −5.53519951937327730915506033297, −4.12196296708099721647063286021, −1.85492671042857562741002517517,
2.86001860257039679398210868800, 4.64419865390129387614011547920, 5.45461149728077424722847653941, 6.78205128267635501739595218871, 8.426320178916794271269645742399, 9.223432634792648971063271686512, 10.42865324778073088288378406500, 11.21618870351214128473596623863, 12.16223898308493711616487105926, 13.13712256832366131695424890221