Properties

Label 156.1.o.a
Level $156$
Weight $1$
Character orbit 156.o
Analytic conductor $0.078$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,1,Mod(29,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 156.o (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0778541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2028.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.73008.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{3} - \zeta_{6}^{2} q^{7} + \zeta_{6}^{2} q^{9} + \zeta_{6}^{2} q^{13} + 2 \zeta_{6}^{2} q^{19} - q^{21} + q^{25} + q^{27} - q^{31} - 2 \zeta_{6} q^{37} + q^{39} - \zeta_{6}^{2} q^{43} + \cdots - \zeta_{6}^{2} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{7} - q^{9} - q^{13} - 2 q^{19} - 2 q^{21} + 2 q^{25} + 2 q^{27} - 2 q^{31} - 2 q^{37} + 2 q^{39} + q^{43} + 4 q^{57} + q^{61} + q^{63} + q^{67} - 2 q^{73} - q^{75} - 2 q^{79} - q^{81}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{6}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 0.866025i 0 0 0 0.500000 0.866025i 0 −0.500000 + 0.866025i 0
113.1 0 −0.500000 + 0.866025i 0 0 0 0.500000 + 0.866025i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.c even 3 1 inner
39.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 156.1.o.a 2
3.b odd 2 1 CM 156.1.o.a 2
4.b odd 2 1 624.1.bs.a 2
5.b even 2 1 3900.1.bu.b 2
5.c odd 4 2 3900.1.cb.b 4
8.b even 2 1 2496.1.bs.b 2
8.d odd 2 1 2496.1.bs.a 2
12.b even 2 1 624.1.bs.a 2
13.b even 2 1 2028.1.o.a 2
13.c even 3 1 inner 156.1.o.a 2
13.c even 3 1 2028.1.d.a 1
13.d odd 4 2 2028.1.s.b 4
13.e even 6 1 2028.1.d.b 1
13.e even 6 1 2028.1.o.a 2
13.f odd 12 2 2028.1.g.b 2
13.f odd 12 2 2028.1.s.b 4
15.d odd 2 1 3900.1.bu.b 2
15.e even 4 2 3900.1.cb.b 4
24.f even 2 1 2496.1.bs.a 2
24.h odd 2 1 2496.1.bs.b 2
39.d odd 2 1 2028.1.o.a 2
39.f even 4 2 2028.1.s.b 4
39.h odd 6 1 2028.1.d.b 1
39.h odd 6 1 2028.1.o.a 2
39.i odd 6 1 inner 156.1.o.a 2
39.i odd 6 1 2028.1.d.a 1
39.k even 12 2 2028.1.g.b 2
39.k even 12 2 2028.1.s.b 4
52.j odd 6 1 624.1.bs.a 2
65.n even 6 1 3900.1.bu.b 2
65.q odd 12 2 3900.1.cb.b 4
104.n odd 6 1 2496.1.bs.a 2
104.r even 6 1 2496.1.bs.b 2
156.p even 6 1 624.1.bs.a 2
195.x odd 6 1 3900.1.bu.b 2
195.bl even 12 2 3900.1.cb.b 4
312.bh odd 6 1 2496.1.bs.b 2
312.bn even 6 1 2496.1.bs.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.1.o.a 2 1.a even 1 1 trivial
156.1.o.a 2 3.b odd 2 1 CM
156.1.o.a 2 13.c even 3 1 inner
156.1.o.a 2 39.i odd 6 1 inner
624.1.bs.a 2 4.b odd 2 1
624.1.bs.a 2 12.b even 2 1
624.1.bs.a 2 52.j odd 6 1
624.1.bs.a 2 156.p even 6 1
2028.1.d.a 1 13.c even 3 1
2028.1.d.a 1 39.i odd 6 1
2028.1.d.b 1 13.e even 6 1
2028.1.d.b 1 39.h odd 6 1
2028.1.g.b 2 13.f odd 12 2
2028.1.g.b 2 39.k even 12 2
2028.1.o.a 2 13.b even 2 1
2028.1.o.a 2 13.e even 6 1
2028.1.o.a 2 39.d odd 2 1
2028.1.o.a 2 39.h odd 6 1
2028.1.s.b 4 13.d odd 4 2
2028.1.s.b 4 13.f odd 12 2
2028.1.s.b 4 39.f even 4 2
2028.1.s.b 4 39.k even 12 2
2496.1.bs.a 2 8.d odd 2 1
2496.1.bs.a 2 24.f even 2 1
2496.1.bs.a 2 104.n odd 6 1
2496.1.bs.a 2 312.bn even 6 1
2496.1.bs.b 2 8.b even 2 1
2496.1.bs.b 2 24.h odd 2 1
2496.1.bs.b 2 104.r even 6 1
2496.1.bs.b 2 312.bh odd 6 1
3900.1.bu.b 2 5.b even 2 1
3900.1.bu.b 2 15.d odd 2 1
3900.1.bu.b 2 65.n even 6 1
3900.1.bu.b 2 195.x odd 6 1
3900.1.cb.b 4 5.c odd 4 2
3900.1.cb.b 4 15.e even 4 2
3900.1.cb.b 4 65.q odd 12 2
3900.1.cb.b 4 195.bl even 12 2

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(156, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less