Properties

Label 2028.1.s.b
Level $2028$
Weight $1$
Character orbit 2028.s
Analytic conductor $1.012$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,1,Mod(485,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.485");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2028.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01210384562\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2028.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{4} q^{3} + \zeta_{12}^{5} q^{7} - \zeta_{12}^{2} q^{9} + 2 \zeta_{12}^{5} q^{19} - \zeta_{12}^{3} q^{21} - q^{25} + q^{27} + \zeta_{12}^{3} q^{31} - 2 \zeta_{12} q^{37} - \zeta_{12}^{2} q^{43} + \cdots - \zeta_{12}^{5} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{9} - 4 q^{25} + 4 q^{27} - 2 q^{43} + 2 q^{61} + 2 q^{75} - 4 q^{79} - 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.500000 + 0.866025i 0 0 0 −0.866025 + 0.500000i 0 −0.500000 0.866025i 0
485.2 0 −0.500000 + 0.866025i 0 0 0 0.866025 0.500000i 0 −0.500000 0.866025i 0
1037.1 0 −0.500000 0.866025i 0 0 0 −0.866025 0.500000i 0 −0.500000 + 0.866025i 0
1037.2 0 −0.500000 0.866025i 0 0 0 0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner
39.d odd 2 1 inner
39.h odd 6 1 inner
39.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.1.s.b 4
3.b odd 2 1 CM 2028.1.s.b 4
13.b even 2 1 inner 2028.1.s.b 4
13.c even 3 1 2028.1.g.b 2
13.c even 3 1 inner 2028.1.s.b 4
13.d odd 4 1 156.1.o.a 2
13.d odd 4 1 2028.1.o.a 2
13.e even 6 1 2028.1.g.b 2
13.e even 6 1 inner 2028.1.s.b 4
13.f odd 12 1 156.1.o.a 2
13.f odd 12 1 2028.1.d.a 1
13.f odd 12 1 2028.1.d.b 1
13.f odd 12 1 2028.1.o.a 2
39.d odd 2 1 inner 2028.1.s.b 4
39.f even 4 1 156.1.o.a 2
39.f even 4 1 2028.1.o.a 2
39.h odd 6 1 2028.1.g.b 2
39.h odd 6 1 inner 2028.1.s.b 4
39.i odd 6 1 2028.1.g.b 2
39.i odd 6 1 inner 2028.1.s.b 4
39.k even 12 1 156.1.o.a 2
39.k even 12 1 2028.1.d.a 1
39.k even 12 1 2028.1.d.b 1
39.k even 12 1 2028.1.o.a 2
52.f even 4 1 624.1.bs.a 2
52.l even 12 1 624.1.bs.a 2
65.f even 4 1 3900.1.cb.b 4
65.g odd 4 1 3900.1.bu.b 2
65.k even 4 1 3900.1.cb.b 4
65.o even 12 1 3900.1.cb.b 4
65.s odd 12 1 3900.1.bu.b 2
65.t even 12 1 3900.1.cb.b 4
104.j odd 4 1 2496.1.bs.b 2
104.m even 4 1 2496.1.bs.a 2
104.u even 12 1 2496.1.bs.a 2
104.x odd 12 1 2496.1.bs.b 2
156.l odd 4 1 624.1.bs.a 2
156.v odd 12 1 624.1.bs.a 2
195.j odd 4 1 3900.1.cb.b 4
195.n even 4 1 3900.1.bu.b 2
195.u odd 4 1 3900.1.cb.b 4
195.bc odd 12 1 3900.1.cb.b 4
195.bh even 12 1 3900.1.bu.b 2
195.bn odd 12 1 3900.1.cb.b 4
312.w odd 4 1 2496.1.bs.a 2
312.y even 4 1 2496.1.bs.b 2
312.bo even 12 1 2496.1.bs.b 2
312.bq odd 12 1 2496.1.bs.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.1.o.a 2 13.d odd 4 1
156.1.o.a 2 13.f odd 12 1
156.1.o.a 2 39.f even 4 1
156.1.o.a 2 39.k even 12 1
624.1.bs.a 2 52.f even 4 1
624.1.bs.a 2 52.l even 12 1
624.1.bs.a 2 156.l odd 4 1
624.1.bs.a 2 156.v odd 12 1
2028.1.d.a 1 13.f odd 12 1
2028.1.d.a 1 39.k even 12 1
2028.1.d.b 1 13.f odd 12 1
2028.1.d.b 1 39.k even 12 1
2028.1.g.b 2 13.c even 3 1
2028.1.g.b 2 13.e even 6 1
2028.1.g.b 2 39.h odd 6 1
2028.1.g.b 2 39.i odd 6 1
2028.1.o.a 2 13.d odd 4 1
2028.1.o.a 2 13.f odd 12 1
2028.1.o.a 2 39.f even 4 1
2028.1.o.a 2 39.k even 12 1
2028.1.s.b 4 1.a even 1 1 trivial
2028.1.s.b 4 3.b odd 2 1 CM
2028.1.s.b 4 13.b even 2 1 inner
2028.1.s.b 4 13.c even 3 1 inner
2028.1.s.b 4 13.e even 6 1 inner
2028.1.s.b 4 39.d odd 2 1 inner
2028.1.s.b 4 39.h odd 6 1 inner
2028.1.s.b 4 39.i odd 6 1 inner
2496.1.bs.a 2 104.m even 4 1
2496.1.bs.a 2 104.u even 12 1
2496.1.bs.a 2 312.w odd 4 1
2496.1.bs.a 2 312.bq odd 12 1
2496.1.bs.b 2 104.j odd 4 1
2496.1.bs.b 2 104.x odd 12 1
2496.1.bs.b 2 312.y even 4 1
2496.1.bs.b 2 312.bo even 12 1
3900.1.bu.b 2 65.g odd 4 1
3900.1.bu.b 2 65.s odd 12 1
3900.1.bu.b 2 195.n even 4 1
3900.1.bu.b 2 195.bh even 12 1
3900.1.cb.b 4 65.f even 4 1
3900.1.cb.b 4 65.k even 4 1
3900.1.cb.b 4 65.o even 12 1
3900.1.cb.b 4 65.t even 12 1
3900.1.cb.b 4 195.j odd 4 1
3900.1.cb.b 4 195.u odd 4 1
3900.1.cb.b 4 195.bc odd 12 1
3900.1.cb.b 4 195.bn odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - T_{7}^{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2028, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T + 1)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
show more
show less