L(s) = 1 | + (0.415 + 0.909i)2-s + (0.273 − 0.0801i)3-s + (−0.654 + 0.755i)4-s + (0.186 + 0.215i)6-s + (0.186 + 1.29i)7-s + (−0.959 − 0.281i)8-s + (−0.773 + 0.496i)9-s + (−0.797 + 1.74i)11-s + (−0.118 + 0.258i)12-s + (0.186 − 1.29i)13-s + (−1.10 + 0.708i)14-s + (−0.142 − 0.989i)16-s + (−0.654 − 0.755i)17-s + (−0.773 − 0.496i)18-s + (0.154 + 0.339i)21-s − 1.91·22-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)2-s + (0.273 − 0.0801i)3-s + (−0.654 + 0.755i)4-s + (0.186 + 0.215i)6-s + (0.186 + 1.29i)7-s + (−0.959 − 0.281i)8-s + (−0.773 + 0.496i)9-s + (−0.797 + 1.74i)11-s + (−0.118 + 0.258i)12-s + (0.186 − 1.29i)13-s + (−1.10 + 0.708i)14-s + (−0.142 − 0.989i)16-s + (−0.654 − 0.755i)17-s + (−0.773 − 0.496i)18-s + (0.154 + 0.339i)21-s − 1.91·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.087304757\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.087304757\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.415 - 0.909i)T \) |
| 17 | \( 1 + (0.654 + 0.755i)T \) |
| 23 | \( 1 + (0.654 + 0.755i)T \) |
good | 3 | \( 1 + (-0.273 + 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 5 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 7 | \( 1 + (-0.186 - 1.29i)T + (-0.959 + 0.281i)T^{2} \) |
| 11 | \( 1 + (0.797 - 1.74i)T + (-0.654 - 0.755i)T^{2} \) |
| 13 | \( 1 + (-0.186 + 1.29i)T + (-0.959 - 0.281i)T^{2} \) |
| 19 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 29 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 31 | \( 1 + (-1.84 - 0.540i)T + (0.841 + 0.540i)T^{2} \) |
| 37 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 41 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 43 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.273 - 1.89i)T + (-0.959 + 0.281i)T^{2} \) |
| 59 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 61 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 67 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 71 | \( 1 + (-0.830 - 1.81i)T + (-0.654 + 0.755i)T^{2} \) |
| 73 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 79 | \( 1 + (0.118 - 0.822i)T + (-0.959 - 0.281i)T^{2} \) |
| 83 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 89 | \( 1 + (-1.84 + 0.540i)T + (0.841 - 0.540i)T^{2} \) |
| 97 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.747900285421762962044915203636, −8.897829516309000022327402744948, −8.255282862975311927596193657359, −7.68292575983350579818578258237, −6.79593376406128167915606683837, −5.74137870428161482626032827821, −5.17065668553531068607147749645, −4.50840165735720587862679759654, −2.87576759909559420010341410952, −2.45209876422008420674718989062,
0.71051724044555093964614809119, 2.21016625017147395214686801366, 3.34702221310977595260068398682, 3.94320298958285459985715363231, 4.82929198538778766359186710720, 6.05103647327584917322833506204, 6.50079884127105418492892363978, 8.053782763593601696968171126958, 8.506485343959601457288436794966, 9.369456989991438851675285674406