L(s) = 1 | + (0.415 + 0.909i)2-s + (0.273 − 0.0801i)3-s + (−0.654 + 0.755i)4-s + (0.186 + 0.215i)6-s + (0.186 + 1.29i)7-s + (−0.959 − 0.281i)8-s + (−0.773 + 0.496i)9-s + (−0.797 + 1.74i)11-s + (−0.118 + 0.258i)12-s + (0.186 − 1.29i)13-s + (−1.10 + 0.708i)14-s + (−0.142 − 0.989i)16-s + (−0.654 − 0.755i)17-s + (−0.773 − 0.496i)18-s + (0.154 + 0.339i)21-s − 1.91·22-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)2-s + (0.273 − 0.0801i)3-s + (−0.654 + 0.755i)4-s + (0.186 + 0.215i)6-s + (0.186 + 1.29i)7-s + (−0.959 − 0.281i)8-s + (−0.773 + 0.496i)9-s + (−0.797 + 1.74i)11-s + (−0.118 + 0.258i)12-s + (0.186 − 1.29i)13-s + (−1.10 + 0.708i)14-s + (−0.142 − 0.989i)16-s + (−0.654 − 0.755i)17-s + (−0.773 − 0.496i)18-s + (0.154 + 0.339i)21-s − 1.91·22-s + ⋯ |
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.952−0.305i)Λ(1−s)
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.952−0.305i)Λ(1−s)
Degree: |
2 |
Conductor: |
1564
= 22⋅17⋅23
|
Sign: |
−0.952−0.305i
|
Analytic conductor: |
0.780537 |
Root analytic conductor: |
0.883480 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1564(1223,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1564, ( :0), −0.952−0.305i)
|
Particular Values
L(21) |
≈ |
1.087304757 |
L(21) |
≈ |
1.087304757 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.415−0.909i)T |
| 17 | 1+(0.654+0.755i)T |
| 23 | 1+(0.654+0.755i)T |
good | 3 | 1+(−0.273+0.0801i)T+(0.841−0.540i)T2 |
| 5 | 1+(−0.415−0.909i)T2 |
| 7 | 1+(−0.186−1.29i)T+(−0.959+0.281i)T2 |
| 11 | 1+(0.797−1.74i)T+(−0.654−0.755i)T2 |
| 13 | 1+(−0.186+1.29i)T+(−0.959−0.281i)T2 |
| 19 | 1+(0.142+0.989i)T2 |
| 29 | 1+(0.142−0.989i)T2 |
| 31 | 1+(−1.84−0.540i)T+(0.841+0.540i)T2 |
| 37 | 1+(−0.415+0.909i)T2 |
| 41 | 1+(−0.415−0.909i)T2 |
| 43 | 1+(−0.841+0.540i)T2 |
| 47 | 1−T2 |
| 53 | 1+(−0.273−1.89i)T+(−0.959+0.281i)T2 |
| 59 | 1+(0.959+0.281i)T2 |
| 61 | 1+(−0.841−0.540i)T2 |
| 67 | 1+(0.654−0.755i)T2 |
| 71 | 1+(−0.830−1.81i)T+(−0.654+0.755i)T2 |
| 73 | 1+(0.142+0.989i)T2 |
| 79 | 1+(0.118−0.822i)T+(−0.959−0.281i)T2 |
| 83 | 1+(−0.415+0.909i)T2 |
| 89 | 1+(−1.84+0.540i)T+(0.841−0.540i)T2 |
| 97 | 1+(−0.415−0.909i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.747900285421762962044915203636, −8.897829516309000022327402744948, −8.255282862975311927596193657359, −7.68292575983350579818578258237, −6.79593376406128167915606683837, −5.74137870428161482626032827821, −5.17065668553531068607147749645, −4.50840165735720587862679759654, −2.87576759909559420010341410952, −2.45209876422008420674718989062,
0.71051724044555093964614809119, 2.21016625017147395214686801366, 3.34702221310977595260068398682, 3.94320298958285459985715363231, 4.82929198538778766359186710720, 6.05103647327584917322833506204, 6.50079884127105418492892363978, 8.053782763593601696968171126958, 8.506485343959601457288436794966, 9.369456989991438851675285674406