L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 + 0.292i)11-s − 1.00·16-s + 1.00·18-s + (−0.292 − 0.707i)22-s + (1 + i)23-s + (−0.707 − 0.707i)25-s + (0.707 + 1.70i)29-s + (0.707 + 0.707i)32-s + (−0.707 − 0.707i)36-s + (−0.707 − 0.292i)37-s + (1.70 + 0.707i)43-s + (−0.292 + 0.707i)44-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 + 0.292i)11-s − 1.00·16-s + 1.00·18-s + (−0.292 − 0.707i)22-s + (1 + i)23-s + (−0.707 − 0.707i)25-s + (0.707 + 1.70i)29-s + (0.707 + 0.707i)32-s + (−0.707 − 0.707i)36-s + (−0.707 − 0.292i)37-s + (1.70 + 0.707i)43-s + (−0.292 + 0.707i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7368074674\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7368074674\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (-1 - i)T + iT^{2} \) |
| 29 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.529034014802124882671447288175, −9.000032768279324597756800357139, −8.224696830817156949627853157165, −7.44391272844857297793611666791, −6.66640746776151022767153792532, −5.46892101243739222507119211348, −4.48005800797459833174797614894, −3.43879139777043829952931053248, −2.51712324361124875632430646967, −1.36601141306477706755349510952,
0.830273354711556467065703469392, 2.36621571555812480692928309701, 3.68892987091514333311053187165, 4.79903656229115455758747502400, 5.84485244555263839439400979653, 6.37757125908925135101429686566, 7.18011948530548228231016023838, 8.127188706170689416193556396965, 8.821623064266671119529435900069, 9.357794394836919016888598388498