L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.173 + 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.266 − 0.223i)5-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (−0.500 + 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.326 + 0.118i)10-s + (0.939 − 1.62i)11-s + (0.5 + 0.866i)12-s + (−0.766 − 0.642i)14-s + (0.266 − 0.223i)15-s + (0.173 − 0.984i)16-s + (1.43 − 0.524i)17-s + 0.999·18-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.173 + 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.266 − 0.223i)5-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (−0.500 + 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.326 + 0.118i)10-s + (0.939 − 1.62i)11-s + (0.5 + 0.866i)12-s + (−0.766 − 0.642i)14-s + (0.266 − 0.223i)15-s + (0.173 − 0.984i)16-s + (1.43 − 0.524i)17-s + 0.999·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7456253153\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7456253153\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 3 | \( 1 + (0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
good | 5 | \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 11 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.53T + T^{2} \) |
| 41 | \( 1 + (0.266 - 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.0603 + 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.495654226234039403376332396294, −9.097258242607008585254979642532, −8.115413052975519556285253904875, −7.84157046251323533070334156465, −6.14856531751945901519292050489, −5.86537148172826594810429442065, −5.01703874558420879152706773831, −3.69800634562293872714428284296, −2.79077923316672954495189486746, −1.08399056496362065400811103529,
1.17617746979941180312282470185, 1.92029342847969771298959186847, 3.27418107742079849620701050926, 4.26157081468873519247673860345, 5.61882782181612992657581613530, 6.76048303480544966398923942305, 7.32422447326384033356511582907, 7.67533334357434650648319442670, 8.577219646658225390249599104151, 9.591066306867864577701498041535