Properties

Label 2-161-1.1-c3-0-10
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.40·2-s − 4.22·3-s − 6.03·4-s + 13.7·5-s − 5.91·6-s + 7·7-s − 19.6·8-s − 9.15·9-s + 19.2·10-s + 43.5·11-s + 25.5·12-s − 9.99·13-s + 9.80·14-s − 58.1·15-s + 20.7·16-s + 113.·17-s − 12.8·18-s + 118.·19-s − 83.1·20-s − 29.5·21-s + 61.0·22-s + 23·23-s + 83.0·24-s + 64.7·25-s − 14.0·26-s + 152.·27-s − 42.2·28-s + ⋯
L(s)  = 1  + 0.495·2-s − 0.813·3-s − 0.754·4-s + 1.23·5-s − 0.402·6-s + 0.377·7-s − 0.868·8-s − 0.338·9-s + 0.610·10-s + 1.19·11-s + 0.613·12-s − 0.213·13-s + 0.187·14-s − 1.00·15-s + 0.324·16-s + 1.62·17-s − 0.167·18-s + 1.42·19-s − 0.930·20-s − 0.307·21-s + 0.591·22-s + 0.208·23-s + 0.706·24-s + 0.518·25-s − 0.105·26-s + 1.08·27-s − 0.285·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.766135598\)
\(L(\frac12)\) \(\approx\) \(1.766135598\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 1.40T + 8T^{2} \)
3 \( 1 + 4.22T + 27T^{2} \)
5 \( 1 - 13.7T + 125T^{2} \)
11 \( 1 - 43.5T + 1.33e3T^{2} \)
13 \( 1 + 9.99T + 2.19e3T^{2} \)
17 \( 1 - 113.T + 4.91e3T^{2} \)
19 \( 1 - 118.T + 6.85e3T^{2} \)
29 \( 1 - 270.T + 2.43e4T^{2} \)
31 \( 1 + 112.T + 2.97e4T^{2} \)
37 \( 1 + 281.T + 5.06e4T^{2} \)
41 \( 1 + 348.T + 6.89e4T^{2} \)
43 \( 1 + 300.T + 7.95e4T^{2} \)
47 \( 1 + 188.T + 1.03e5T^{2} \)
53 \( 1 - 716.T + 1.48e5T^{2} \)
59 \( 1 - 156.T + 2.05e5T^{2} \)
61 \( 1 + 226.T + 2.26e5T^{2} \)
67 \( 1 + 148.T + 3.00e5T^{2} \)
71 \( 1 - 895.T + 3.57e5T^{2} \)
73 \( 1 + 271.T + 3.89e5T^{2} \)
79 \( 1 - 146.T + 4.93e5T^{2} \)
83 \( 1 - 1.21e3T + 5.71e5T^{2} \)
89 \( 1 + 305.T + 7.04e5T^{2} \)
97 \( 1 + 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17261667793432128146247624667, −11.85349936033971074989646534970, −10.26601642222338454386138322876, −9.536860636487478975992414696430, −8.460166329130268297949575399239, −6.68116816522779527540533487343, −5.56370738833505041045462936548, −5.09612098995609420887946885001, −3.34385113671348148932638683084, −1.14689749614727222328166067807, 1.14689749614727222328166067807, 3.34385113671348148932638683084, 5.09612098995609420887946885001, 5.56370738833505041045462936548, 6.68116816522779527540533487343, 8.460166329130268297949575399239, 9.536860636487478975992414696430, 10.26601642222338454386138322876, 11.85349936033971074989646534970, 12.17261667793432128146247624667

Graph of the $Z$-function along the critical line