Properties

Label 161.4.a.d
Level 161161
Weight 44
Character orbit 161.a
Self dual yes
Analytic conductor 9.4999.499
Analytic rank 00
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 161=723 161 = 7 \cdot 23
Weight: k k == 4 4
Character orbit: [χ][\chi] == 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 9.499307510929.49930751092
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x1176x10+311x9+1979x88466x719942x6+95647x5+70656 x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2β4q3+(β2+6)q4+(β7+β1+1)q5+(β6β5β41)q6+7q7+(β9+β7+β6+5)q8++(22β11+31β10++217)q99+O(q100) q + \beta_1 q^{2} - \beta_{4} q^{3} + (\beta_{2} + 6) q^{4} + (\beta_{7} + \beta_1 + 1) q^{5} + ( - \beta_{6} - \beta_{5} - \beta_{4} - 1) q^{6} + 7 q^{7} + (\beta_{9} + \beta_{7} + \beta_{6} + \cdots - 5) q^{8}+ \cdots + (22 \beta_{11} + 31 \beta_{10} + \cdots + 217) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q2+q3+72q4+16q515q6+84q721q8+203q9+106q10+50q11139q12+21q13+28q14+192q15+516q16+26q17+251q18++2400q99+O(q100) 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x1176x10+311x9+1979x88466x719942x6+95647x5+70656 x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν214 \nu^{2} - 14 Copy content Toggle raw display
β3\beta_{3}== (1057087ν11736072ν1081046848ν9+59112285ν8+2160058053ν7++27581677952)/466611584 ( 1057087 \nu^{11} - 736072 \nu^{10} - 81046848 \nu^{9} + 59112285 \nu^{8} + 2160058053 \nu^{7} + \cdots + 27581677952 ) / 466611584 Copy content Toggle raw display
β4\beta_{4}== (1117105ν11226867ν1085952171ν9+21399060ν8+2305747495ν7++19319250176)/233305792 ( 1117105 \nu^{11} - 226867 \nu^{10} - 85952171 \nu^{9} + 21399060 \nu^{8} + 2305747495 \nu^{7} + \cdots + 19319250176 ) / 233305792 Copy content Toggle raw display
β5\beta_{5}== (1519271ν11498841ν10117032797ν9+43441900ν8+3145054901ν7++27799261696)/233305792 ( 1519271 \nu^{11} - 498841 \nu^{10} - 117032797 \nu^{9} + 43441900 \nu^{8} + 3145054901 \nu^{7} + \cdots + 27799261696 ) / 233305792 Copy content Toggle raw display
β6\beta_{6}== (1605177ν11326483ν10123035627ν9+30155740ν8+3282153271ν7++31578353216)/233305792 ( 1605177 \nu^{11} - 326483 \nu^{10} - 123035627 \nu^{9} + 30155740 \nu^{8} + 3282153271 \nu^{7} + \cdots + 31578353216 ) / 233305792 Copy content Toggle raw display
β7\beta_{7}== (99065ν1121862ν107609238ν9+2030749ν8+203556131ν7++1798578304)/6964352 ( 99065 \nu^{11} - 21862 \nu^{10} - 7609238 \nu^{9} + 2030749 \nu^{8} + 203556131 \nu^{7} + \cdots + 1798578304 ) / 6964352 Copy content Toggle raw display
β8\beta_{8}== (7097167ν112425124ν10546101432ν9+210879061ν8++160329330944)/466611584 ( 7097167 \nu^{11} - 2425124 \nu^{10} - 546101432 \nu^{9} + 210879061 \nu^{8} + \cdots + 160329330944 ) / 466611584 Copy content Toggle raw display
β9\beta_{9}== (5914582ν11+1189665ν10+454454473ν9112071589ν8+101406339072)/233305792 ( - 5914582 \nu^{11} + 1189665 \nu^{10} + 454454473 \nu^{9} - 112071589 \nu^{8} + \cdots - 101406339072 ) / 233305792 Copy content Toggle raw display
β10\beta_{10}== (7229129ν111769452ν10555592220ν9+160203215ν8++135239697088)/233305792 ( 7229129 \nu^{11} - 1769452 \nu^{10} - 555592220 \nu^{9} + 160203215 \nu^{8} + \cdots + 135239697088 ) / 233305792 Copy content Toggle raw display
β11\beta_{11}== (22127067ν114919124ν101700971564ν9+457650357ν8++427632581376)/466611584 ( 22127067 \nu^{11} - 4919124 \nu^{10} - 1700971564 \nu^{9} + 457650357 \nu^{8} + \cdots + 427632581376 ) / 466611584 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+14 \beta_{2} + 14 Copy content Toggle raw display
ν3\nu^{3}== β9+β7+β6+β5β3+β2+23β15 \beta_{9} + \beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} + \beta_{2} + 23\beta _1 - 5 Copy content Toggle raw display
ν4\nu^{4}== β11+2β92β7+2β62β5+6β4+β3+31β22β1+315 \beta_{11} + 2\beta_{9} - 2\beta_{7} + 2\beta_{6} - 2\beta_{5} + 6\beta_{4} + \beta_{3} + 31\beta_{2} - 2\beta _1 + 315 Copy content Toggle raw display
ν5\nu^{5}== β116β10+36β9+40β7+44β6+44β5+14β4+185 - \beta_{11} - 6 \beta_{10} + 36 \beta_{9} + 40 \beta_{7} + 44 \beta_{6} + 44 \beta_{5} + 14 \beta_{4} + \cdots - 185 Copy content Toggle raw display
ν6\nu^{6}== 27β1110β10+75β9+16β865β7+83β6109β5++8130 27 \beta_{11} - 10 \beta_{10} + 75 \beta_{9} + 16 \beta_{8} - 65 \beta_{7} + 83 \beta_{6} - 109 \beta_{5} + \cdots + 8130 Copy content Toggle raw display
ν7\nu^{7}== 58β11354β10+1026β9+48β8+1242β7+1570β6+6210 - 58 \beta_{11} - 354 \beta_{10} + 1026 \beta_{9} + 48 \beta_{8} + 1242 \beta_{7} + 1570 \beta_{6} + \cdots - 6210 Copy content Toggle raw display
ν8\nu^{8}== 476β11748β10+2172β9+1184β81532β7+2692β6++224802 476 \beta_{11} - 748 \beta_{10} + 2172 \beta_{9} + 1184 \beta_{8} - 1532 \beta_{7} + 2692 \beta_{6} + \cdots + 224802 Copy content Toggle raw display
ν9\nu^{9}== 2552β1115264β10+26977β9+3408β8+36409β7+202781 - 2552 \beta_{11} - 15264 \beta_{10} + 26977 \beta_{9} + 3408 \beta_{8} + 36409 \beta_{7} + \cdots - 202781 Copy content Toggle raw display
ν10\nu^{10}== 3329β1136960β10+56722β9+57632β829538β7++6459459 3329 \beta_{11} - 36960 \beta_{10} + 56722 \beta_{9} + 57632 \beta_{8} - 29538 \beta_{7} + \cdots + 6459459 Copy content Toggle raw display
ν11\nu^{11}== 100129β11579662β10+683620β9+162544β8+1056368β7+6540689 - 100129 \beta_{11} - 579662 \beta_{10} + 683620 \beta_{9} + 162544 \beta_{8} + 1056368 \beta_{7} + \cdots - 6540689 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.60949
−4.89764
−3.54240
−3.06154
−0.718333
0.285899
1.40034
2.11879
3.76511
3.76781
4.95487
5.53660
−5.60949 −7.98435 23.4664 −5.27021 44.7882 7.00000 −86.7589 36.7498 29.5632
1.2 −4.89764 7.57994 15.9869 −14.0191 −37.1238 7.00000 −39.1171 30.4555 68.6607
1.3 −3.54240 −2.15594 4.54860 6.95559 7.63719 7.00000 12.2262 −22.3519 −24.6395
1.4 −3.06154 5.71887 1.37302 21.1978 −17.5086 7.00000 20.2888 5.70552 −64.8978
1.5 −0.718333 −2.25536 −7.48400 −17.9779 1.62010 7.00000 11.1227 −21.9133 12.9141
1.6 0.285899 8.01264 −7.91826 1.18183 2.29081 7.00000 −4.55102 37.2024 0.337884
1.7 1.40034 −4.22464 −6.03905 13.7756 −5.91594 7.00000 −19.6594 −9.15238 19.2904
1.8 2.11879 −9.53944 −3.51074 −13.8523 −20.2120 7.00000 −24.3888 64.0009 −29.3501
1.9 3.76511 9.31158 6.17602 1.25334 35.0591 7.00000 −6.86747 59.7056 4.71897
1.10 3.76781 2.58468 6.19640 21.4417 9.73858 7.00000 −6.79562 −20.3194 80.7883
1.11 4.95487 3.24611 16.5508 −2.30377 16.0841 7.00000 42.3679 −16.4628 −11.4149
1.12 5.53660 −9.29409 22.6539 3.61751 −51.4577 7.00000 81.1328 59.3802 20.0287
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 1 -1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.4.a.d 12
3.b odd 2 1 1449.4.a.o 12
7.b odd 2 1 1127.4.a.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.a.d 12 1.a even 1 1 trivial
1127.4.a.h 12 7.b odd 2 1
1449.4.a.o 12 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2124T21176T210+311T29+1979T288466T27+70656 T_{2}^{12} - 4 T_{2}^{11} - 76 T_{2}^{10} + 311 T_{2}^{9} + 1979 T_{2}^{8} - 8466 T_{2}^{7} + \cdots - 70656 acting on S4new(Γ0(161))S_{4}^{\mathrm{new}}(\Gamma_0(161)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T124T11+70656 T^{12} - 4 T^{11} + \cdots - 70656 Copy content Toggle raw display
33 T12++394600512 T^{12} + \cdots + 394600512 Copy content Toggle raw display
55 T12+9891773184 T^{12} + \cdots - 9891773184 Copy content Toggle raw display
77 (T7)12 (T - 7)^{12} Copy content Toggle raw display
1111 T12+23 ⁣ ⁣04 T^{12} + \cdots - 23\!\cdots\!04 Copy content Toggle raw display
1313 T12++82 ⁣ ⁣04 T^{12} + \cdots + 82\!\cdots\!04 Copy content Toggle raw display
1717 T12+14 ⁣ ⁣72 T^{12} + \cdots - 14\!\cdots\!72 Copy content Toggle raw display
1919 T12++63 ⁣ ⁣52 T^{12} + \cdots + 63\!\cdots\!52 Copy content Toggle raw display
2323 (T23)12 (T - 23)^{12} Copy content Toggle raw display
2929 T12++52 ⁣ ⁣36 T^{12} + \cdots + 52\!\cdots\!36 Copy content Toggle raw display
3131 T12+33 ⁣ ⁣64 T^{12} + \cdots - 33\!\cdots\!64 Copy content Toggle raw display
3737 T12+28 ⁣ ⁣52 T^{12} + \cdots - 28\!\cdots\!52 Copy content Toggle raw display
4141 T12++32 ⁣ ⁣52 T^{12} + \cdots + 32\!\cdots\!52 Copy content Toggle raw display
4343 T12++75 ⁣ ⁣08 T^{12} + \cdots + 75\!\cdots\!08 Copy content Toggle raw display
4747 T12++36 ⁣ ⁣48 T^{12} + \cdots + 36\!\cdots\!48 Copy content Toggle raw display
5353 T12++39 ⁣ ⁣48 T^{12} + \cdots + 39\!\cdots\!48 Copy content Toggle raw display
5959 T12+41 ⁣ ⁣32 T^{12} + \cdots - 41\!\cdots\!32 Copy content Toggle raw display
6161 T12+60 ⁣ ⁣16 T^{12} + \cdots - 60\!\cdots\!16 Copy content Toggle raw display
6767 T12+10 ⁣ ⁣64 T^{12} + \cdots - 10\!\cdots\!64 Copy content Toggle raw display
7171 T12++32 ⁣ ⁣88 T^{12} + \cdots + 32\!\cdots\!88 Copy content Toggle raw display
7373 T12+13 ⁣ ⁣24 T^{12} + \cdots - 13\!\cdots\!24 Copy content Toggle raw display
7979 T12+26 ⁣ ⁣72 T^{12} + \cdots - 26\!\cdots\!72 Copy content Toggle raw display
8383 T12++76 ⁣ ⁣04 T^{12} + \cdots + 76\!\cdots\!04 Copy content Toggle raw display
8989 T12+81 ⁣ ⁣12 T^{12} + \cdots - 81\!\cdots\!12 Copy content Toggle raw display
9797 T12++22 ⁣ ⁣52 T^{12} + \cdots + 22\!\cdots\!52 Copy content Toggle raw display
show more
show less