L(s) = 1 | + (−2.5 − 4.33i)5-s + (14 − 24.2i)7-s + (−12 + 20.7i)11-s + (35 + 60.6i)13-s − 102·17-s + 20·19-s + (−36 − 62.3i)23-s + (−12.5 + 21.6i)25-s + (153 − 265. i)29-s + (68 + 117. i)31-s − 140·35-s − 214·37-s + (−75 − 129. i)41-s + (146 − 252. i)43-s + (−36 + 62.3i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.755 − 1.30i)7-s + (−0.328 + 0.569i)11-s + (0.746 + 1.29i)13-s − 1.45·17-s + 0.241·19-s + (−0.326 − 0.565i)23-s + (−0.100 + 0.173i)25-s + (0.979 − 1.69i)29-s + (0.393 + 0.682i)31-s − 0.676·35-s − 0.950·37-s + (−0.285 − 0.494i)41-s + (0.517 − 0.896i)43-s + (−0.111 + 0.193i)47-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.939+0.342i)Λ(4−s)
Λ(s)=(=(1620s/2ΓC(s+3/2)L(s)(−0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.939+0.342i
|
Analytic conductor: |
95.5830 |
Root analytic conductor: |
9.77666 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(541,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :3/2), −0.939+0.342i)
|
Particular Values
L(2) |
≈ |
0.9384547671 |
L(21) |
≈ |
0.9384547671 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2.5+4.33i)T |
good | 7 | 1+(−14+24.2i)T+(−171.5−297.i)T2 |
| 11 | 1+(12−20.7i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(−35−60.6i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+102T+4.91e3T2 |
| 19 | 1−20T+6.85e3T2 |
| 23 | 1+(36+62.3i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−153+265.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(−68−117.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+214T+5.06e4T2 |
| 41 | 1+(75+129.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−146+252.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(36−62.3i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−414T+1.48e5T2 |
| 59 | 1+(372+644.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−209+361.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(94+162.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+480T+3.57e5T2 |
| 73 | 1−434T+3.89e5T2 |
| 79 | 1+(676−1.17e3i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(306−530.i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1−30T+7.04e5T2 |
| 97 | 1+(−143+247.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.547260882535689327380156975654, −7.991085724660757792613368335997, −6.95758157987109535433013259062, −6.55921888067703625589068338815, −5.14147078489080546128051608332, −4.28141120490515930946244434280, −4.01645323185992284302894424068, −2.31247405426533283606355487836, −1.37140440519123501488102033210, −0.20544300134166669683436031814,
1.30650910786750581001073580124, 2.54985571187617264689192164446, 3.21065100287582212912150922592, 4.48188421458624591445003424693, 5.44787944422769105583285265215, 5.96356101105182161632133712485, 6.98870363129822896151130558666, 8.025601777667353844490279152195, 8.540068900937614714903440636934, 9.110082105687472034628756895982