L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s − 0.732i·5-s + (0.866 − 0.5i)7-s + 0.999i·8-s + (0.366 − 0.633i)10-s + (−1.5 − 0.866i)11-s + (1.59 − 3.23i)13-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (−1.86 − 3.23i)17-s + (0.866 − 0.5i)19-s + (0.633 − 0.366i)20-s + (−0.866 − 1.5i)22-s + (1.73 − 3i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s − 0.327i·5-s + (0.327 − 0.188i)7-s + 0.353i·8-s + (0.115 − 0.200i)10-s + (−0.452 − 0.261i)11-s + (0.443 − 0.896i)13-s + 0.267·14-s + (−0.125 + 0.216i)16-s + (−0.452 − 0.783i)17-s + (0.198 − 0.114i)19-s + (0.141 − 0.0818i)20-s + (−0.184 − 0.319i)22-s + (0.361 − 0.625i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.902+0.431i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.902+0.431i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.902+0.431i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(1135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.902+0.431i)
|
Particular Values
L(1) |
≈ |
2.447576786 |
L(21) |
≈ |
2.447576786 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(−0.866+0.5i)T |
| 13 | 1+(−1.59+3.23i)T |
good | 5 | 1+0.732iT−5T2 |
| 11 | 1+(1.5+0.866i)T+(5.5+9.52i)T2 |
| 17 | 1+(1.86+3.23i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.866+0.5i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.73+3i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.23+5.59i)T+(−14.5−25.1i)T2 |
| 31 | 1−2.19iT−31T2 |
| 37 | 1+(−5.83−3.36i)T+(18.5+32.0i)T2 |
| 41 | 1+(2.59+1.5i)T+(20.5+35.5i)T2 |
| 43 | 1+(−1.63−2.83i)T+(−21.5+37.2i)T2 |
| 47 | 1+2.46iT−47T2 |
| 53 | 1+7T+53T2 |
| 59 | 1+(0.803−0.464i)T+(29.5−51.0i)T2 |
| 61 | 1+(2.59+4.5i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.73−4.46i)T+(33.5+58.0i)T2 |
| 71 | 1+(−1.90+1.09i)T+(35.5−61.4i)T2 |
| 73 | 1+5.46iT−73T2 |
| 79 | 1−2.07T+79T2 |
| 83 | 1+0.196iT−83T2 |
| 89 | 1+(−9.06−5.23i)T+(44.5+77.0i)T2 |
| 97 | 1+(−13.5+7.83i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.167180307965718439152518910441, −8.324937270058030442492900953121, −7.79502036405850901701829937824, −6.81412061440473885144137882358, −6.04674905165356563452160751159, −5.05343742399378135050588325518, −4.59407574713558939662602346191, −3.35061895603064059981480144332, −2.50413742604742807317364036985, −0.824991909797718461465940940955,
1.42045467599086733677418857244, 2.45786563439892253109680955057, 3.48535681781101575635676774862, 4.42720917593724661239371599312, 5.20216383909316755572750853331, 6.17951509823235513325760044994, 6.86640724161462779695001214023, 7.77922849832951588386887083898, 8.748472342323068944538599892490, 9.462738210152191930777166342848