L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s − 0.732i·5-s + (0.866 − 0.5i)7-s + 0.999i·8-s + (0.366 − 0.633i)10-s + (−1.5 − 0.866i)11-s + (1.59 − 3.23i)13-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (−1.86 − 3.23i)17-s + (0.866 − 0.5i)19-s + (0.633 − 0.366i)20-s + (−0.866 − 1.5i)22-s + (1.73 − 3i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s − 0.327i·5-s + (0.327 − 0.188i)7-s + 0.353i·8-s + (0.115 − 0.200i)10-s + (−0.452 − 0.261i)11-s + (0.443 − 0.896i)13-s + 0.267·14-s + (−0.125 + 0.216i)16-s + (−0.452 − 0.783i)17-s + (0.198 − 0.114i)19-s + (0.141 − 0.0818i)20-s + (−0.184 − 0.319i)22-s + (0.361 − 0.625i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.447576786\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.447576786\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-1.59 + 3.23i)T \) |
good | 5 | \( 1 + 0.732iT - 5T^{2} \) |
| 11 | \( 1 + (1.5 + 0.866i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.86 + 3.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.73 + 3i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.23 + 5.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.19iT - 31T^{2} \) |
| 37 | \( 1 + (-5.83 - 3.36i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.59 + 1.5i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.63 - 2.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.46iT - 47T^{2} \) |
| 53 | \( 1 + 7T + 53T^{2} \) |
| 59 | \( 1 + (0.803 - 0.464i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.59 + 4.5i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.73 - 4.46i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.90 + 1.09i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.46iT - 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 + 0.196iT - 83T^{2} \) |
| 89 | \( 1 + (-9.06 - 5.23i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.5 + 7.83i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.167180307965718439152518910441, −8.324937270058030442492900953121, −7.79502036405850901701829937824, −6.81412061440473885144137882358, −6.04674905165356563452160751159, −5.05343742399378135050588325518, −4.59407574713558939662602346191, −3.35061895603064059981480144332, −2.50413742604742807317364036985, −0.824991909797718461465940940955,
1.42045467599086733677418857244, 2.45786563439892253109680955057, 3.48535681781101575635676774862, 4.42720917593724661239371599312, 5.20216383909316755572750853331, 6.17951509823235513325760044994, 6.86640724161462779695001214023, 7.77922849832951588386887083898, 8.748472342323068944538599892490, 9.462738210152191930777166342848