L(s) = 1 | + (0.707 + 0.707i)2-s + (1.36 − 0.564i)3-s + 1.00i·4-s + (0.382 + 0.923i)5-s + (1.36 + 0.564i)6-s + (1.35 − 3.27i)7-s + (−0.707 + 0.707i)8-s + (−0.581 + 0.581i)9-s + (−0.382 + 0.923i)10-s + (−4.35 − 1.80i)11-s + (0.564 + 1.36i)12-s + 5.47i·13-s + (3.27 − 1.35i)14-s + (1.04 + 1.04i)15-s − 1.00·16-s + (2.52 − 3.25i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.787 − 0.326i)3-s + 0.500i·4-s + (0.171 + 0.413i)5-s + (0.556 + 0.230i)6-s + (0.513 − 1.23i)7-s + (−0.250 + 0.250i)8-s + (−0.193 + 0.193i)9-s + (−0.121 + 0.292i)10-s + (−1.31 − 0.543i)11-s + (0.163 + 0.393i)12-s + 1.51i·13-s + (0.876 − 0.362i)14-s + (0.269 + 0.269i)15-s − 0.250·16-s + (0.613 − 0.789i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.890−0.454i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.890−0.454i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.890−0.454i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.890−0.454i)
|
Particular Values
L(1) |
≈ |
1.72813+0.414910i |
L(21) |
≈ |
1.72813+0.414910i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 5 | 1+(−0.382−0.923i)T |
| 17 | 1+(−2.52+3.25i)T |
good | 3 | 1+(−1.36+0.564i)T+(2.12−2.12i)T2 |
| 7 | 1+(−1.35+3.27i)T+(−4.94−4.94i)T2 |
| 11 | 1+(4.35+1.80i)T+(7.77+7.77i)T2 |
| 13 | 1−5.47iT−13T2 |
| 19 | 1+(−0.857−0.857i)T+19iT2 |
| 23 | 1+(5.28+2.18i)T+(16.2+16.2i)T2 |
| 29 | 1+(1.77+4.29i)T+(−20.5+20.5i)T2 |
| 31 | 1+(−6.72+2.78i)T+(21.9−21.9i)T2 |
| 37 | 1+(8.58−3.55i)T+(26.1−26.1i)T2 |
| 41 | 1+(−0.0547+0.132i)T+(−28.9−28.9i)T2 |
| 43 | 1+(0.587−0.587i)T−43iT2 |
| 47 | 1+5.85iT−47T2 |
| 53 | 1+(−6.54−6.54i)T+53iT2 |
| 59 | 1+(3.33−3.33i)T−59iT2 |
| 61 | 1+(−4.76+11.4i)T+(−43.1−43.1i)T2 |
| 67 | 1−8.66T+67T2 |
| 71 | 1+(−4.75+1.96i)T+(50.2−50.2i)T2 |
| 73 | 1+(−6.17−14.9i)T+(−51.6+51.6i)T2 |
| 79 | 1+(−9.34−3.87i)T+(55.8+55.8i)T2 |
| 83 | 1+(−2.40−2.40i)T+83iT2 |
| 89 | 1−2.24iT−89T2 |
| 97 | 1+(−1.66−4.02i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.48527967756984319563869752967, −11.93340475843217307734455738669, −10.92717095718889013636888118660, −9.826410352954333617696921078013, −8.299384093439368943093016698727, −7.69476429607915333021088938358, −6.71607394649876030504279754078, −5.21445117041883226244285705797, −3.86255822775029665986653948268, −2.40532095765347409643954785236,
2.26074361973846656271127409516, 3.37017107446711173572010687131, 5.10940936921285466603210446442, 5.75362912733269015170707705360, 7.937539710473713299507249241118, 8.595257446648270767966260020264, 9.794036225432959731058348655474, 10.58944734047855909604616509939, 12.05237874406556887305949261434, 12.58333474375168429035590086074