Properties

Label 2-170-17.2-c1-0-4
Degree 22
Conductor 170170
Sign 0.8900.454i0.890 - 0.454i
Analytic cond. 1.357451.35745
Root an. cond. 1.165091.16509
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (1.36 − 0.564i)3-s + 1.00i·4-s + (0.382 + 0.923i)5-s + (1.36 + 0.564i)6-s + (1.35 − 3.27i)7-s + (−0.707 + 0.707i)8-s + (−0.581 + 0.581i)9-s + (−0.382 + 0.923i)10-s + (−4.35 − 1.80i)11-s + (0.564 + 1.36i)12-s + 5.47i·13-s + (3.27 − 1.35i)14-s + (1.04 + 1.04i)15-s − 1.00·16-s + (2.52 − 3.25i)17-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + (0.787 − 0.326i)3-s + 0.500i·4-s + (0.171 + 0.413i)5-s + (0.556 + 0.230i)6-s + (0.513 − 1.23i)7-s + (−0.250 + 0.250i)8-s + (−0.193 + 0.193i)9-s + (−0.121 + 0.292i)10-s + (−1.31 − 0.543i)11-s + (0.163 + 0.393i)12-s + 1.51i·13-s + (0.876 − 0.362i)14-s + (0.269 + 0.269i)15-s − 0.250·16-s + (0.613 − 0.789i)17-s + ⋯

Functional equation

Λ(s)=(170s/2ΓC(s)L(s)=((0.8900.454i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(170s/2ΓC(s+1/2)L(s)=((0.8900.454i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 170170    =    25172 \cdot 5 \cdot 17
Sign: 0.8900.454i0.890 - 0.454i
Analytic conductor: 1.357451.35745
Root analytic conductor: 1.165091.16509
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ170(121,)\chi_{170} (121, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 170, ( :1/2), 0.8900.454i)(2,\ 170,\ (\ :1/2),\ 0.890 - 0.454i)

Particular Values

L(1)L(1) \approx 1.72813+0.414910i1.72813 + 0.414910i
L(12)L(\frac12) \approx 1.72813+0.414910i1.72813 + 0.414910i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
5 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
17 1+(2.52+3.25i)T 1 + (-2.52 + 3.25i)T
good3 1+(1.36+0.564i)T+(2.122.12i)T2 1 + (-1.36 + 0.564i)T + (2.12 - 2.12i)T^{2}
7 1+(1.35+3.27i)T+(4.944.94i)T2 1 + (-1.35 + 3.27i)T + (-4.94 - 4.94i)T^{2}
11 1+(4.35+1.80i)T+(7.77+7.77i)T2 1 + (4.35 + 1.80i)T + (7.77 + 7.77i)T^{2}
13 15.47iT13T2 1 - 5.47iT - 13T^{2}
19 1+(0.8570.857i)T+19iT2 1 + (-0.857 - 0.857i)T + 19iT^{2}
23 1+(5.28+2.18i)T+(16.2+16.2i)T2 1 + (5.28 + 2.18i)T + (16.2 + 16.2i)T^{2}
29 1+(1.77+4.29i)T+(20.5+20.5i)T2 1 + (1.77 + 4.29i)T + (-20.5 + 20.5i)T^{2}
31 1+(6.72+2.78i)T+(21.921.9i)T2 1 + (-6.72 + 2.78i)T + (21.9 - 21.9i)T^{2}
37 1+(8.583.55i)T+(26.126.1i)T2 1 + (8.58 - 3.55i)T + (26.1 - 26.1i)T^{2}
41 1+(0.0547+0.132i)T+(28.928.9i)T2 1 + (-0.0547 + 0.132i)T + (-28.9 - 28.9i)T^{2}
43 1+(0.5870.587i)T43iT2 1 + (0.587 - 0.587i)T - 43iT^{2}
47 1+5.85iT47T2 1 + 5.85iT - 47T^{2}
53 1+(6.546.54i)T+53iT2 1 + (-6.54 - 6.54i)T + 53iT^{2}
59 1+(3.333.33i)T59iT2 1 + (3.33 - 3.33i)T - 59iT^{2}
61 1+(4.76+11.4i)T+(43.143.1i)T2 1 + (-4.76 + 11.4i)T + (-43.1 - 43.1i)T^{2}
67 18.66T+67T2 1 - 8.66T + 67T^{2}
71 1+(4.75+1.96i)T+(50.250.2i)T2 1 + (-4.75 + 1.96i)T + (50.2 - 50.2i)T^{2}
73 1+(6.1714.9i)T+(51.6+51.6i)T2 1 + (-6.17 - 14.9i)T + (-51.6 + 51.6i)T^{2}
79 1+(9.343.87i)T+(55.8+55.8i)T2 1 + (-9.34 - 3.87i)T + (55.8 + 55.8i)T^{2}
83 1+(2.402.40i)T+83iT2 1 + (-2.40 - 2.40i)T + 83iT^{2}
89 12.24iT89T2 1 - 2.24iT - 89T^{2}
97 1+(1.664.02i)T+(68.5+68.5i)T2 1 + (-1.66 - 4.02i)T + (-68.5 + 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.48527967756984319563869752967, −11.93340475843217307734455738669, −10.92717095718889013636888118660, −9.826410352954333617696921078013, −8.299384093439368943093016698727, −7.69476429607915333021088938358, −6.71607394649876030504279754078, −5.21445117041883226244285705797, −3.86255822775029665986653948268, −2.40532095765347409643954785236, 2.26074361973846656271127409516, 3.37017107446711173572010687131, 5.10940936921285466603210446442, 5.75362912733269015170707705360, 7.937539710473713299507249241118, 8.595257446648270767966260020264, 9.794036225432959731058348655474, 10.58944734047855909604616509939, 12.05237874406556887305949261434, 12.58333474375168429035590086074

Graph of the ZZ-function along the critical line