L(s) = 1 | + (−0.453 − 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.987 − 0.156i)5-s + (0.987 + 0.156i)8-s + (−0.891 − 0.453i)9-s + (0.309 + 0.951i)10-s + (0.0966 + 0.297i)13-s + (−0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + 1.00i·18-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + (0.221 − 0.221i)26-s + (−0.465 + 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.453 − 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.987 − 0.156i)5-s + (0.987 + 0.156i)8-s + (−0.891 − 0.453i)9-s + (0.309 + 0.951i)10-s + (0.0966 + 0.297i)13-s + (−0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + 1.00i·18-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + (0.221 − 0.221i)26-s + (−0.465 + 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.548−0.836i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.548−0.836i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.548−0.836i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), 0.548−0.836i)
|
Particular Values
L(21) |
≈ |
0.3519467307 |
L(21) |
≈ |
0.3519467307 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.453+0.891i)T |
| 5 | 1+(0.987+0.156i)T |
| 17 | 1+(0.587−0.809i)T |
good | 3 | 1+(0.891+0.453i)T2 |
| 7 | 1+(−0.707−0.707i)T2 |
| 11 | 1+(0.156+0.987i)T2 |
| 13 | 1+(−0.0966−0.297i)T+(−0.809+0.587i)T2 |
| 19 | 1+(−0.951−0.309i)T2 |
| 23 | 1+(−0.156−0.987i)T2 |
| 29 | 1+(0.465−1.93i)T+(−0.891−0.453i)T2 |
| 31 | 1+(0.453+0.891i)T2 |
| 37 | 1+(0.987−0.843i)T+(0.156−0.987i)T2 |
| 41 | 1+(−0.465−0.0366i)T+(0.987+0.156i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.309−0.951i)T2 |
| 53 | 1+(1.95−0.309i)T+(0.951−0.309i)T2 |
| 59 | 1+(−0.587−0.809i)T2 |
| 61 | 1+(−1.47−1.26i)T+(0.156+0.987i)T2 |
| 67 | 1+(0.309−0.951i)T2 |
| 71 | 1+(−0.891−0.453i)T2 |
| 73 | 1+(−0.0819−1.04i)T+(−0.987+0.156i)T2 |
| 79 | 1+(0.453−0.891i)T2 |
| 83 | 1+(0.951+0.309i)T2 |
| 89 | 1+(1.69+0.550i)T+(0.809+0.587i)T2 |
| 97 | 1+(1.47+0.355i)T+(0.891+0.453i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.581226485347804593251011181747, −8.623060959260584885713956278028, −8.577678570120816553634121292314, −7.46838254432190257764656601741, −6.67475812498951288873599306447, −5.39745687481286477607516260676, −4.39249716261579688567406160240, −3.60316739546623307757047060166, −2.83348283141836778375602404847, −1.39952828155611162408715615482,
0.32905139289381597737333822044, 2.31756797552344404347325239924, 3.63564105140008397873237180264, 4.62527979400434484125391586093, 5.41949051344950309480746225655, 6.31255523720394097898431700462, 7.17942795779257080686346366657, 7.87428009663507458000628982795, 8.409888367124078645557109801661, 9.185098844024206049701161742862