L(s) = 1 | + (−0.453 − 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.987 − 0.156i)5-s + (0.987 + 0.156i)8-s + (−0.891 − 0.453i)9-s + (0.309 + 0.951i)10-s + (0.0966 + 0.297i)13-s + (−0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + 1.00i·18-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + (0.221 − 0.221i)26-s + (−0.465 + 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.453 − 0.891i)2-s + (−0.587 + 0.809i)4-s + (−0.987 − 0.156i)5-s + (0.987 + 0.156i)8-s + (−0.891 − 0.453i)9-s + (0.309 + 0.951i)10-s + (0.0966 + 0.297i)13-s + (−0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + 1.00i·18-s + (0.707 − 0.707i)20-s + (0.951 + 0.309i)25-s + (0.221 − 0.221i)26-s + (−0.465 + 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3519467307\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3519467307\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.453 + 0.891i)T \) |
| 5 | \( 1 + (0.987 + 0.156i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
good | 3 | \( 1 + (0.891 + 0.453i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 13 | \( 1 + (-0.0966 - 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 23 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 29 | \( 1 + (0.465 - 1.93i)T + (-0.891 - 0.453i)T^{2} \) |
| 31 | \( 1 + (0.453 + 0.891i)T^{2} \) |
| 37 | \( 1 + (0.987 - 0.843i)T + (0.156 - 0.987i)T^{2} \) |
| 41 | \( 1 + (-0.465 - 0.0366i)T + (0.987 + 0.156i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (1.95 - 0.309i)T + (0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 61 | \( 1 + (-1.47 - 1.26i)T + (0.156 + 0.987i)T^{2} \) |
| 67 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.891 - 0.453i)T^{2} \) |
| 73 | \( 1 + (-0.0819 - 1.04i)T + (-0.987 + 0.156i)T^{2} \) |
| 79 | \( 1 + (0.453 - 0.891i)T^{2} \) |
| 83 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (1.69 + 0.550i)T + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (1.47 + 0.355i)T + (0.891 + 0.453i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.581226485347804593251011181747, −8.623060959260584885713956278028, −8.577678570120816553634121292314, −7.46838254432190257764656601741, −6.67475812498951288873599306447, −5.39745687481286477607516260676, −4.39249716261579688567406160240, −3.60316739546623307757047060166, −2.83348283141836778375602404847, −1.39952828155611162408715615482,
0.32905139289381597737333822044, 2.31756797552344404347325239924, 3.63564105140008397873237180264, 4.62527979400434484125391586093, 5.41949051344950309480746225655, 6.31255523720394097898431700462, 7.17942795779257080686346366657, 7.87428009663507458000628982795, 8.409888367124078645557109801661, 9.185098844024206049701161742862