L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (−0.987 + 0.156i)8-s + (0.891 − 0.453i)9-s + (0.309 − 0.951i)10-s + (−0.0966 + 0.297i)13-s + (−0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s − 1.00i·18-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + (0.221 + 0.221i)26-s + (−0.152 + 0.0366i)29-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (−0.987 + 0.156i)8-s + (0.891 − 0.453i)9-s + (0.309 − 0.951i)10-s + (−0.0966 + 0.297i)13-s + (−0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s − 1.00i·18-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + (0.221 + 0.221i)26-s + (−0.152 + 0.0366i)29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.174 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.174 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.593242742\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.593242742\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.453 + 0.891i)T \) |
| 5 | \( 1 + (-0.987 + 0.156i)T \) |
| 17 | \( 1 + (0.587 + 0.809i)T \) |
good | 3 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 13 | \( 1 + (0.0966 - 0.297i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 23 | \( 1 + (0.156 - 0.987i)T^{2} \) |
| 29 | \( 1 + (0.152 - 0.0366i)T + (0.891 - 0.453i)T^{2} \) |
| 31 | \( 1 + (-0.453 + 0.891i)T^{2} \) |
| 37 | \( 1 + (-0.987 + 1.15i)T + (-0.156 - 0.987i)T^{2} \) |
| 41 | \( 1 + (-0.152 - 1.93i)T + (-0.987 + 0.156i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (1.95 + 0.309i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 61 | \( 1 + (0.303 + 0.355i)T + (-0.156 + 0.987i)T^{2} \) |
| 67 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 73 | \( 1 + (1.70 + 0.133i)T + (0.987 + 0.156i)T^{2} \) |
| 79 | \( 1 + (-0.453 - 0.891i)T^{2} \) |
| 83 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 89 | \( 1 + (-1.69 + 0.550i)T + (0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.303 - 1.26i)T + (-0.891 + 0.453i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.423176910821703690616571344825, −9.059433605844372911409111699317, −7.74273397272427761140390819277, −6.58128023198851445401618098707, −6.06952841755594256055726173767, −4.91690457084515393840547557202, −4.42363164694028242177701296078, −3.20776033460349958947179185278, −2.21845851579484101191622725266, −1.22551918619632178116218428808,
1.79103417969873406581896297135, 2.99056750022948203419878567197, 4.17427498575721561342830314743, 4.93063924446196686762536207783, 5.80102841742334238504343603352, 6.48986184720219241804027051681, 7.21995757392721520004561431519, 8.039574310778653961293230283641, 8.863968407857058284230888777018, 9.665295013319071934665521676318