L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (−0.987 + 0.156i)8-s + (0.891 − 0.453i)9-s + (0.309 − 0.951i)10-s + (−0.0966 + 0.297i)13-s + (−0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s − 1.00i·18-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + (0.221 + 0.221i)26-s + (−0.152 + 0.0366i)29-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (−0.987 + 0.156i)8-s + (0.891 − 0.453i)9-s + (0.309 − 0.951i)10-s + (−0.0966 + 0.297i)13-s + (−0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s − 1.00i·18-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + (0.221 + 0.221i)26-s + (−0.152 + 0.0366i)29-s + (0.707 + 0.707i)32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(−0.174+0.984i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(−0.174+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.174+0.984i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1419,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), −0.174+0.984i)
|
Particular Values
L(21) |
≈ |
1.593242742 |
L(21) |
≈ |
1.593242742 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.453+0.891i)T |
| 5 | 1+(−0.987+0.156i)T |
| 17 | 1+(0.587+0.809i)T |
good | 3 | 1+(−0.891+0.453i)T2 |
| 7 | 1+(0.707−0.707i)T2 |
| 11 | 1+(−0.156+0.987i)T2 |
| 13 | 1+(0.0966−0.297i)T+(−0.809−0.587i)T2 |
| 19 | 1+(−0.951+0.309i)T2 |
| 23 | 1+(0.156−0.987i)T2 |
| 29 | 1+(0.152−0.0366i)T+(0.891−0.453i)T2 |
| 31 | 1+(−0.453+0.891i)T2 |
| 37 | 1+(−0.987+1.15i)T+(−0.156−0.987i)T2 |
| 41 | 1+(−0.152−1.93i)T+(−0.987+0.156i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(1.95+0.309i)T+(0.951+0.309i)T2 |
| 59 | 1+(−0.587+0.809i)T2 |
| 61 | 1+(0.303+0.355i)T+(−0.156+0.987i)T2 |
| 67 | 1+(0.309+0.951i)T2 |
| 71 | 1+(0.891−0.453i)T2 |
| 73 | 1+(1.70+0.133i)T+(0.987+0.156i)T2 |
| 79 | 1+(−0.453−0.891i)T2 |
| 83 | 1+(0.951−0.309i)T2 |
| 89 | 1+(−1.69+0.550i)T+(0.809−0.587i)T2 |
| 97 | 1+(−0.303−1.26i)T+(−0.891+0.453i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.423176910821703690616571344825, −9.059433605844372911409111699317, −7.74273397272427761140390819277, −6.58128023198851445401618098707, −6.06952841755594256055726173767, −4.91690457084515393840547557202, −4.42363164694028242177701296078, −3.20776033460349958947179185278, −2.21845851579484101191622725266, −1.22551918619632178116218428808,
1.79103417969873406581896297135, 2.99056750022948203419878567197, 4.17427498575721561342830314743, 4.93063924446196686762536207783, 5.80102841742334238504343603352, 6.48986184720219241804027051681, 7.21995757392721520004561431519, 8.039574310778653961293230283641, 8.863968407857058284230888777018, 9.665295013319071934665521676318