L(s) = 1 | + (−0.996 + 0.0784i)2-s + (0.987 − 0.156i)4-s + (−0.987 − 0.156i)5-s + (−0.972 + 0.233i)8-s + (−0.760 + 0.649i)9-s + (0.996 + 0.0784i)10-s + (0.444 − 0.144i)13-s + (0.951 − 0.309i)16-s + (0.453 − 0.891i)17-s + (0.707 − 0.707i)18-s − 20-s + (0.951 + 0.309i)25-s + (−0.431 + 0.178i)26-s + (0.666 + 1.80i)29-s + (−0.923 + 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.996 + 0.0784i)2-s + (0.987 − 0.156i)4-s + (−0.987 − 0.156i)5-s + (−0.972 + 0.233i)8-s + (−0.760 + 0.649i)9-s + (0.996 + 0.0784i)10-s + (0.444 − 0.144i)13-s + (0.951 − 0.309i)16-s + (0.453 − 0.891i)17-s + (0.707 − 0.707i)18-s − 20-s + (0.951 + 0.309i)25-s + (−0.431 + 0.178i)26-s + (0.666 + 1.80i)29-s + (−0.923 + 0.382i)32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.853−0.521i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.853−0.521i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.853−0.521i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(147,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), 0.853−0.521i)
|
Particular Values
L(21) |
≈ |
0.5588418143 |
L(21) |
≈ |
0.5588418143 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.996−0.0784i)T |
| 5 | 1+(0.987+0.156i)T |
| 17 | 1+(−0.453+0.891i)T |
good | 3 | 1+(0.760−0.649i)T2 |
| 7 | 1+(−0.923−0.382i)T2 |
| 11 | 1+(0.522+0.852i)T2 |
| 13 | 1+(−0.444+0.144i)T+(0.809−0.587i)T2 |
| 19 | 1+(0.891−0.453i)T2 |
| 23 | 1+(−0.852+0.522i)T2 |
| 29 | 1+(−0.666−1.80i)T+(−0.760+0.649i)T2 |
| 31 | 1+(0.0784+0.996i)T2 |
| 37 | 1+(−0.226−0.0638i)T+(0.852+0.522i)T2 |
| 41 | 1+(−1.56−1.23i)T+(0.233+0.972i)T2 |
| 43 | 1+(0.707+0.707i)T2 |
| 47 | 1+(−0.309−0.951i)T2 |
| 53 | 1+(1.01+0.243i)T+(0.891+0.453i)T2 |
| 59 | 1+(0.156−0.987i)T2 |
| 61 | 1+(−1.41+0.398i)T+(0.852−0.522i)T2 |
| 67 | 1+(0.951+0.309i)T2 |
| 71 | 1+(0.649+0.760i)T2 |
| 73 | 1+(0.0984−0.831i)T+(−0.972−0.233i)T2 |
| 79 | 1+(−0.0784+0.996i)T2 |
| 83 | 1+(−0.453−0.891i)T2 |
| 89 | 1+(−0.0712−0.139i)T+(−0.587+0.809i)T2 |
| 97 | 1+(−1.42−0.657i)T+(0.649+0.760i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.406728931324951987835948278363, −8.714003167785294719346158219335, −8.073979487627177811834951232829, −7.48646850885876466735922301423, −6.66902861432196667334661191163, −5.62772017522920335138554946750, −4.77389199071676007318147459860, −3.39358319281260119597218329807, −2.62724042075182796501868190859, −1.04185245266334702473969637005,
0.76218979166036468935683884055, 2.38818698831577730971186892906, 3.41898475360946198716131101417, 4.16711951501813260372940704529, 5.77254565491351866443424312169, 6.35532187709789006162917204146, 7.31533181073213775788686740261, 8.052612592380734033544348572721, 8.589254142191724018505262026097, 9.327168267297243099459266504453