L(s) = 1 | + (−1.45 + 2.52i)2-s + (−0.241 − 0.419i)4-s + (−10.1 + 17.4i)5-s − 1.64·7-s − 21.8·8-s + (−29.4 − 50.9i)10-s + 8.92·11-s + (19.6 + 34.0i)13-s + (2.39 − 4.14i)14-s + (33.8 − 58.5i)16-s + (−3.95 + 6.84i)17-s + (−42.6 − 70.9i)19-s + 9.77·20-s + (−12.9 + 22.5i)22-s + (55.2 + 95.7i)23-s + ⋯ |
L(s) = 1 | + (−0.514 + 0.891i)2-s + (−0.0302 − 0.0523i)4-s + (−0.903 + 1.56i)5-s − 0.0887·7-s − 0.967·8-s + (−0.930 − 1.61i)10-s + 0.244·11-s + (0.419 + 0.726i)13-s + (0.0456 − 0.0791i)14-s + (0.528 − 0.915i)16-s + (−0.0563 + 0.0976i)17-s + (−0.515 − 0.856i)19-s + 0.109·20-s + (−0.125 + 0.218i)22-s + (0.501 + 0.868i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.288+0.957i)Λ(4−s)
Λ(s)=(=(171s/2ΓC(s+3/2)L(s)(−0.288+0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.288+0.957i
|
Analytic conductor: |
10.0893 |
Root analytic conductor: |
3.17637 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :3/2), −0.288+0.957i)
|
Particular Values
L(2) |
≈ |
0.298499−0.401795i |
L(21) |
≈ |
0.298499−0.401795i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(42.6+70.9i)T |
good | 2 | 1+(1.45−2.52i)T+(−4−6.92i)T2 |
| 5 | 1+(10.1−17.4i)T+(−62.5−108.i)T2 |
| 7 | 1+1.64T+343T2 |
| 11 | 1−8.92T+1.33e3T2 |
| 13 | 1+(−19.6−34.0i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+(3.95−6.84i)T+(−2.45e3−4.25e3i)T2 |
| 23 | 1+(−55.2−95.7i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(71.8+124.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+57.1T+2.97e4T2 |
| 37 | 1−297.T+5.06e4T2 |
| 41 | 1+(−112.+194.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(163.−283.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(56.2+97.4i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(305.+529.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(368.−638.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−420.−728.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(53.2+92.1i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(386.−669.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1+(369.−639.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(257.−446.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+618.T+5.71e5T2 |
| 89 | 1+(62.3+107.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(349.−606.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.06103467785953648364178936554, −11.48584525053089852312857577670, −11.33539545878912318605609809039, −9.835930524457245862108419925327, −8.679103589521430418852986488855, −7.58986024081959069744637722648, −6.92393442532990976664271374508, −6.11495964908182613753303185922, −3.98710080779863320291732249302, −2.79511722399199797198566569524,
0.28071650346212535961259490371, 1.46665916810169550787583710691, 3.41519181344561502067669721455, 4.75602303906750676462328901969, 6.08638993667591146257228610411, 7.890643929019666148643131047081, 8.712622945735404713410287881832, 9.507259498961522294142052683874, 10.73153283698504006761161849856, 11.55137135701904150733923367774