Properties

Label 2-171-19.11-c3-0-2
Degree 22
Conductor 171171
Sign 0.288+0.957i-0.288 + 0.957i
Analytic cond. 10.089310.0893
Root an. cond. 3.176373.17637
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.45 + 2.52i)2-s + (−0.241 − 0.419i)4-s + (−10.1 + 17.4i)5-s − 1.64·7-s − 21.8·8-s + (−29.4 − 50.9i)10-s + 8.92·11-s + (19.6 + 34.0i)13-s + (2.39 − 4.14i)14-s + (33.8 − 58.5i)16-s + (−3.95 + 6.84i)17-s + (−42.6 − 70.9i)19-s + 9.77·20-s + (−12.9 + 22.5i)22-s + (55.2 + 95.7i)23-s + ⋯
L(s)  = 1  + (−0.514 + 0.891i)2-s + (−0.0302 − 0.0523i)4-s + (−0.903 + 1.56i)5-s − 0.0887·7-s − 0.967·8-s + (−0.930 − 1.61i)10-s + 0.244·11-s + (0.419 + 0.726i)13-s + (0.0456 − 0.0791i)14-s + (0.528 − 0.915i)16-s + (−0.0563 + 0.0976i)17-s + (−0.515 − 0.856i)19-s + 0.109·20-s + (−0.125 + 0.218i)22-s + (0.501 + 0.868i)23-s + ⋯

Functional equation

Λ(s)=(171s/2ΓC(s)L(s)=((0.288+0.957i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.288 + 0.957i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(171s/2ΓC(s+3/2)L(s)=((0.288+0.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.288 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 171171    =    32193^{2} \cdot 19
Sign: 0.288+0.957i-0.288 + 0.957i
Analytic conductor: 10.089310.0893
Root analytic conductor: 3.176373.17637
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ171(163,)\chi_{171} (163, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 171, ( :3/2), 0.288+0.957i)(2,\ 171,\ (\ :3/2),\ -0.288 + 0.957i)

Particular Values

L(2)L(2) \approx 0.2984990.401795i0.298499 - 0.401795i
L(12)L(\frac12) \approx 0.2984990.401795i0.298499 - 0.401795i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
19 1+(42.6+70.9i)T 1 + (42.6 + 70.9i)T
good2 1+(1.452.52i)T+(46.92i)T2 1 + (1.45 - 2.52i)T + (-4 - 6.92i)T^{2}
5 1+(10.117.4i)T+(62.5108.i)T2 1 + (10.1 - 17.4i)T + (-62.5 - 108. i)T^{2}
7 1+1.64T+343T2 1 + 1.64T + 343T^{2}
11 18.92T+1.33e3T2 1 - 8.92T + 1.33e3T^{2}
13 1+(19.634.0i)T+(1.09e3+1.90e3i)T2 1 + (-19.6 - 34.0i)T + (-1.09e3 + 1.90e3i)T^{2}
17 1+(3.956.84i)T+(2.45e34.25e3i)T2 1 + (3.95 - 6.84i)T + (-2.45e3 - 4.25e3i)T^{2}
23 1+(55.295.7i)T+(6.08e3+1.05e4i)T2 1 + (-55.2 - 95.7i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1+(71.8+124.i)T+(1.21e4+2.11e4i)T2 1 + (71.8 + 124. i)T + (-1.21e4 + 2.11e4i)T^{2}
31 1+57.1T+2.97e4T2 1 + 57.1T + 2.97e4T^{2}
37 1297.T+5.06e4T2 1 - 297.T + 5.06e4T^{2}
41 1+(112.+194.i)T+(3.44e45.96e4i)T2 1 + (-112. + 194. i)T + (-3.44e4 - 5.96e4i)T^{2}
43 1+(163.283.i)T+(3.97e46.88e4i)T2 1 + (163. - 283. i)T + (-3.97e4 - 6.88e4i)T^{2}
47 1+(56.2+97.4i)T+(5.19e4+8.99e4i)T2 1 + (56.2 + 97.4i)T + (-5.19e4 + 8.99e4i)T^{2}
53 1+(305.+529.i)T+(7.44e4+1.28e5i)T2 1 + (305. + 529. i)T + (-7.44e4 + 1.28e5i)T^{2}
59 1+(368.638.i)T+(1.02e51.77e5i)T2 1 + (368. - 638. i)T + (-1.02e5 - 1.77e5i)T^{2}
61 1+(420.728.i)T+(1.13e5+1.96e5i)T2 1 + (-420. - 728. i)T + (-1.13e5 + 1.96e5i)T^{2}
67 1+(53.2+92.1i)T+(1.50e5+2.60e5i)T2 1 + (53.2 + 92.1i)T + (-1.50e5 + 2.60e5i)T^{2}
71 1+(386.669.i)T+(1.78e53.09e5i)T2 1 + (386. - 669. i)T + (-1.78e5 - 3.09e5i)T^{2}
73 1+(369.639.i)T+(1.94e53.36e5i)T2 1 + (369. - 639. i)T + (-1.94e5 - 3.36e5i)T^{2}
79 1+(257.446.i)T+(2.46e54.26e5i)T2 1 + (257. - 446. i)T + (-2.46e5 - 4.26e5i)T^{2}
83 1+618.T+5.71e5T2 1 + 618.T + 5.71e5T^{2}
89 1+(62.3+107.i)T+(3.52e5+6.10e5i)T2 1 + (62.3 + 107. i)T + (-3.52e5 + 6.10e5i)T^{2}
97 1+(349.606.i)T+(4.56e57.90e5i)T2 1 + (349. - 606. i)T + (-4.56e5 - 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.06103467785953648364178936554, −11.48584525053089852312857577670, −11.33539545878912318605609809039, −9.835930524457245862108419925327, −8.679103589521430418852986488855, −7.58986024081959069744637722648, −6.92393442532990976664271374508, −6.11495964908182613753303185922, −3.98710080779863320291732249302, −2.79511722399199797198566569524, 0.28071650346212535961259490371, 1.46665916810169550787583710691, 3.41519181344561502067669721455, 4.75602303906750676462328901969, 6.08638993667591146257228610411, 7.890643929019666148643131047081, 8.712622945735404713410287881832, 9.507259498961522294142052683874, 10.73153283698504006761161849856, 11.55137135701904150733923367774

Graph of the ZZ-function along the critical line