L(s) = 1 | + (−1.45 − 2.52i)2-s + (−0.241 + 0.419i)4-s + (−10.1 − 17.4i)5-s − 1.64·7-s − 21.8·8-s + (−29.4 + 50.9i)10-s + 8.92·11-s + (19.6 − 34.0i)13-s + (2.39 + 4.14i)14-s + (33.8 + 58.5i)16-s + (−3.95 − 6.84i)17-s + (−42.6 + 70.9i)19-s + 9.77·20-s + (−12.9 − 22.5i)22-s + (55.2 − 95.7i)23-s + ⋯ |
L(s) = 1 | + (−0.514 − 0.891i)2-s + (−0.0302 + 0.0523i)4-s + (−0.903 − 1.56i)5-s − 0.0887·7-s − 0.967·8-s + (−0.930 + 1.61i)10-s + 0.244·11-s + (0.419 − 0.726i)13-s + (0.0456 + 0.0791i)14-s + (0.528 + 0.915i)16-s + (−0.0563 − 0.0976i)17-s + (−0.515 + 0.856i)19-s + 0.109·20-s + (−0.125 − 0.218i)22-s + (0.501 − 0.868i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.288−0.957i)Λ(4−s)
Λ(s)=(=(171s/2ΓC(s+3/2)L(s)(−0.288−0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.288−0.957i
|
Analytic conductor: |
10.0893 |
Root analytic conductor: |
3.17637 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :3/2), −0.288−0.957i)
|
Particular Values
L(2) |
≈ |
0.298499+0.401795i |
L(21) |
≈ |
0.298499+0.401795i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(42.6−70.9i)T |
good | 2 | 1+(1.45+2.52i)T+(−4+6.92i)T2 |
| 5 | 1+(10.1+17.4i)T+(−62.5+108.i)T2 |
| 7 | 1+1.64T+343T2 |
| 11 | 1−8.92T+1.33e3T2 |
| 13 | 1+(−19.6+34.0i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+(3.95+6.84i)T+(−2.45e3+4.25e3i)T2 |
| 23 | 1+(−55.2+95.7i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(71.8−124.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+57.1T+2.97e4T2 |
| 37 | 1−297.T+5.06e4T2 |
| 41 | 1+(−112.−194.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(163.+283.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(56.2−97.4i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(305.−529.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(368.+638.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−420.+728.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(53.2−92.1i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(386.+669.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+(369.+639.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(257.+446.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+618.T+5.71e5T2 |
| 89 | 1+(62.3−107.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(349.+606.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55137135701904150733923367774, −10.73153283698504006761161849856, −9.507259498961522294142052683874, −8.712622945735404713410287881832, −7.890643929019666148643131047081, −6.08638993667591146257228610411, −4.75602303906750676462328901969, −3.41519181344561502067669721455, −1.46665916810169550787583710691, −0.28071650346212535961259490371,
2.79511722399199797198566569524, 3.98710080779863320291732249302, 6.11495964908182613753303185922, 6.92393442532990976664271374508, 7.58986024081959069744637722648, 8.679103589521430418852986488855, 9.835930524457245862108419925327, 11.33539545878912318605609809039, 11.48584525053089852312857577670, 13.06103467785953648364178936554