L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−2.12 + 0.707i)5-s + (3 + 3i)7-s + (0.707 + 0.707i)8-s + (0.999 − 2i)10-s + 1.41i·11-s + (4 − 4i)13-s − 4.24·14-s − 1.00·16-s + (2.82 − 2.82i)17-s − i·19-s + (0.707 + 2.12i)20-s + (−1.00 − 1.00i)22-s + (3.99 − 3i)25-s + 5.65i·26-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.948 + 0.316i)5-s + (1.13 + 1.13i)7-s + (0.250 + 0.250i)8-s + (0.316 − 0.632i)10-s + 0.426i·11-s + (1.10 − 1.10i)13-s − 1.13·14-s − 0.250·16-s + (0.685 − 0.685i)17-s − 0.229i·19-s + (0.158 + 0.474i)20-s + (−0.213 − 0.213i)22-s + (0.799 − 0.600i)25-s + 1.10i·26-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)(0.501−0.865i)Λ(2−s)
Λ(s)=(=(1710s/2ΓC(s+1/2)L(s)(0.501−0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
1710
= 2⋅32⋅5⋅19
|
Sign: |
0.501−0.865i
|
Analytic conductor: |
13.6544 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1710(647,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1710, ( :1/2), 0.501−0.865i)
|
Particular Values
L(1) |
≈ |
1.354727513 |
L(21) |
≈ |
1.354727513 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 5 | 1+(2.12−0.707i)T |
| 19 | 1+iT |
good | 7 | 1+(−3−3i)T+7iT2 |
| 11 | 1−1.41iT−11T2 |
| 13 | 1+(−4+4i)T−13iT2 |
| 17 | 1+(−2.82+2.82i)T−17iT2 |
| 23 | 1+23iT2 |
| 29 | 1−2.82T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(−6−6i)T+37iT2 |
| 41 | 1+8.48iT−41T2 |
| 43 | 1+(−3+3i)T−43iT2 |
| 47 | 1+(5.65−5.65i)T−47iT2 |
| 53 | 1+(1.41+1.41i)T+53iT2 |
| 59 | 1−5.65T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+(10+10i)T+67iT2 |
| 71 | 1−5.65iT−71T2 |
| 73 | 1+(3−3i)T−73iT2 |
| 79 | 1−4iT−79T2 |
| 83 | 1+(−4.24−4.24i)T+83iT2 |
| 89 | 1−14.1T+89T2 |
| 97 | 1+(−12−12i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.192551292945969603489670094988, −8.473916251246557979230115512568, −7.966965509853654094111405733310, −7.35874154025630527494548112959, −6.28509923094512289081956411530, −5.41681845215034804006341773331, −4.75506841329842610695331140476, −3.50714607748202021236947555208, −2.40639286137031801168239139888, −0.976531280718952274763813662538,
0.882717726971217881790941326471, 1.69138595461354434651361292456, 3.41959879947052310346672792791, 4.06282301086410843976163526108, 4.71114987316064392578918155711, 6.05708410932538686400310719271, 7.15067284526000728106078053531, 7.82319320373404274762521592516, 8.382535328870710228338613950225, 9.024024233020221669624612273703