Properties

Label 1710.2.n.e.647.1
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.e.1673.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-2.12132 + 0.707107i) q^{5} +(3.00000 + 3.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.00000 - 2.00000i) q^{10} +1.41421i q^{11} +(4.00000 - 4.00000i) q^{13} -4.24264 q^{14} -1.00000 q^{16} +(2.82843 - 2.82843i) q^{17} -1.00000i q^{19} +(0.707107 + 2.12132i) q^{20} +(-1.00000 - 1.00000i) q^{22} +(4.00000 - 3.00000i) q^{25} +5.65685i q^{26} +(3.00000 - 3.00000i) q^{28} +2.82843 q^{29} -4.00000 q^{31} +(0.707107 - 0.707107i) q^{32} +4.00000i q^{34} +(-8.48528 - 4.24264i) q^{35} +(6.00000 + 6.00000i) q^{37} +(0.707107 + 0.707107i) q^{38} +(-2.00000 - 1.00000i) q^{40} -8.48528i q^{41} +(3.00000 - 3.00000i) q^{43} +1.41421 q^{44} +(-5.65685 + 5.65685i) q^{47} +11.0000i q^{49} +(-0.707107 + 4.94975i) q^{50} +(-4.00000 - 4.00000i) q^{52} +(-1.41421 - 1.41421i) q^{53} +(-1.00000 - 3.00000i) q^{55} +4.24264i q^{56} +(-2.00000 + 2.00000i) q^{58} +5.65685 q^{59} +10.0000 q^{61} +(2.82843 - 2.82843i) q^{62} +1.00000i q^{64} +(-5.65685 + 11.3137i) q^{65} +(-10.0000 - 10.0000i) q^{67} +(-2.82843 - 2.82843i) q^{68} +(9.00000 - 3.00000i) q^{70} +5.65685i q^{71} +(-3.00000 + 3.00000i) q^{73} -8.48528 q^{74} -1.00000 q^{76} +(-4.24264 + 4.24264i) q^{77} +4.00000i q^{79} +(2.12132 - 0.707107i) q^{80} +(6.00000 + 6.00000i) q^{82} +(4.24264 + 4.24264i) q^{83} +(-4.00000 + 8.00000i) q^{85} +4.24264i q^{86} +(-1.00000 + 1.00000i) q^{88} +14.1421 q^{89} +24.0000 q^{91} -8.00000i q^{94} +(0.707107 + 2.12132i) q^{95} +(12.0000 + 12.0000i) q^{97} +(-7.77817 - 7.77817i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} + 4 q^{10} + 16 q^{13} - 4 q^{16} - 4 q^{22} + 16 q^{25} + 12 q^{28} - 16 q^{31} + 24 q^{37} - 8 q^{40} + 12 q^{43} - 16 q^{52} - 4 q^{55} - 8 q^{58} + 40 q^{61} - 40 q^{67} + 36 q^{70} - 12 q^{73}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.12132 + 0.707107i −0.948683 + 0.316228i
\(6\) 0 0
\(7\) 3.00000 + 3.00000i 1.13389 + 1.13389i 0.989524 + 0.144370i \(0.0461154\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 4.00000 4.00000i 1.10940 1.10940i 0.116171 0.993229i \(-0.462938\pi\)
0.993229 0.116171i \(-0.0370621\pi\)
\(14\) −4.24264 −1.13389
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.82843 2.82843i 0.685994 0.685994i −0.275350 0.961344i \(-0.588794\pi\)
0.961344 + 0.275350i \(0.0887937\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0.707107 + 2.12132i 0.158114 + 0.474342i
\(21\) 0 0
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) 4.00000 3.00000i 0.800000 0.600000i
\(26\) 5.65685i 1.10940i
\(27\) 0 0
\(28\) 3.00000 3.00000i 0.566947 0.566947i
\(29\) 2.82843 0.525226 0.262613 0.964901i \(-0.415416\pi\)
0.262613 + 0.964901i \(0.415416\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 4.00000i 0.685994i
\(35\) −8.48528 4.24264i −1.43427 0.717137i
\(36\) 0 0
\(37\) 6.00000 + 6.00000i 0.986394 + 0.986394i 0.999909 0.0135147i \(-0.00430201\pi\)
−0.0135147 + 0.999909i \(0.504302\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0 0
\(40\) −2.00000 1.00000i −0.316228 0.158114i
\(41\) 8.48528i 1.32518i −0.748983 0.662589i \(-0.769458\pi\)
0.748983 0.662589i \(-0.230542\pi\)
\(42\) 0 0
\(43\) 3.00000 3.00000i 0.457496 0.457496i −0.440337 0.897833i \(-0.645141\pi\)
0.897833 + 0.440337i \(0.145141\pi\)
\(44\) 1.41421 0.213201
\(45\) 0 0
\(46\) 0 0
\(47\) −5.65685 + 5.65685i −0.825137 + 0.825137i −0.986840 0.161703i \(-0.948301\pi\)
0.161703 + 0.986840i \(0.448301\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) −0.707107 + 4.94975i −0.100000 + 0.700000i
\(51\) 0 0
\(52\) −4.00000 4.00000i −0.554700 0.554700i
\(53\) −1.41421 1.41421i −0.194257 0.194257i 0.603276 0.797533i \(-0.293862\pi\)
−0.797533 + 0.603276i \(0.793862\pi\)
\(54\) 0 0
\(55\) −1.00000 3.00000i −0.134840 0.404520i
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) −2.00000 + 2.00000i −0.262613 + 0.262613i
\(59\) 5.65685 0.736460 0.368230 0.929735i \(-0.379964\pi\)
0.368230 + 0.929735i \(0.379964\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 2.82843 2.82843i 0.359211 0.359211i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −5.65685 + 11.3137i −0.701646 + 1.40329i
\(66\) 0 0
\(67\) −10.0000 10.0000i −1.22169 1.22169i −0.967029 0.254665i \(-0.918035\pi\)
−0.254665 0.967029i \(-0.581965\pi\)
\(68\) −2.82843 2.82843i −0.342997 0.342997i
\(69\) 0 0
\(70\) 9.00000 3.00000i 1.07571 0.358569i
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) −8.48528 −0.986394
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −4.24264 + 4.24264i −0.483494 + 0.483494i
\(78\) 0 0
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) 2.12132 0.707107i 0.237171 0.0790569i
\(81\) 0 0
\(82\) 6.00000 + 6.00000i 0.662589 + 0.662589i
\(83\) 4.24264 + 4.24264i 0.465690 + 0.465690i 0.900515 0.434825i \(-0.143190\pi\)
−0.434825 + 0.900515i \(0.643190\pi\)
\(84\) 0 0
\(85\) −4.00000 + 8.00000i −0.433861 + 0.867722i
\(86\) 4.24264i 0.457496i
\(87\) 0 0
\(88\) −1.00000 + 1.00000i −0.106600 + 0.106600i
\(89\) 14.1421 1.49906 0.749532 0.661968i \(-0.230279\pi\)
0.749532 + 0.661968i \(0.230279\pi\)
\(90\) 0 0
\(91\) 24.0000 2.51588
\(92\) 0 0
\(93\) 0 0
\(94\) 8.00000i 0.825137i
\(95\) 0.707107 + 2.12132i 0.0725476 + 0.217643i
\(96\) 0 0
\(97\) 12.0000 + 12.0000i 1.21842 + 1.21842i 0.968187 + 0.250229i \(0.0805058\pi\)
0.250229 + 0.968187i \(0.419494\pi\)
\(98\) −7.77817 7.77817i −0.785714 0.785714i
\(99\) 0 0
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 15.5563i 1.54791i 0.633238 + 0.773957i \(0.281726\pi\)
−0.633238 + 0.773957i \(0.718274\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 5.65685 0.554700
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 8.48528 8.48528i 0.820303 0.820303i −0.165848 0.986151i \(-0.553036\pi\)
0.986151 + 0.165848i \(0.0530362\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 2.82843 + 1.41421i 0.269680 + 0.134840i
\(111\) 0 0
\(112\) −3.00000 3.00000i −0.283473 0.283473i
\(113\) 1.41421 + 1.41421i 0.133038 + 0.133038i 0.770490 0.637452i \(-0.220012\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.82843i 0.262613i
\(117\) 0 0
\(118\) −4.00000 + 4.00000i −0.368230 + 0.368230i
\(119\) 16.9706 1.55569
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) −7.07107 + 7.07107i −0.640184 + 0.640184i
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) −6.36396 + 9.19239i −0.569210 + 0.822192i
\(126\) 0 0
\(127\) −10.0000 10.0000i −0.887357 0.887357i 0.106912 0.994268i \(-0.465904\pi\)
−0.994268 + 0.106912i \(0.965904\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −4.00000 12.0000i −0.350823 1.05247i
\(131\) 12.7279i 1.11204i 0.831168 + 0.556022i \(0.187673\pi\)
−0.831168 + 0.556022i \(0.812327\pi\)
\(132\) 0 0
\(133\) 3.00000 3.00000i 0.260133 0.260133i
\(134\) 14.1421 1.22169
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) −4.24264 + 8.48528i −0.358569 + 0.717137i
\(141\) 0 0
\(142\) −4.00000 4.00000i −0.335673 0.335673i
\(143\) 5.65685 + 5.65685i 0.473050 + 0.473050i
\(144\) 0 0
\(145\) −6.00000 + 2.00000i −0.498273 + 0.166091i
\(146\) 4.24264i 0.351123i
\(147\) 0 0
\(148\) 6.00000 6.00000i 0.493197 0.493197i
\(149\) 18.3848 1.50614 0.753070 0.657941i \(-0.228572\pi\)
0.753070 + 0.657941i \(0.228572\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 0 0
\(154\) 6.00000i 0.483494i
\(155\) 8.48528 2.82843i 0.681554 0.227185i
\(156\) 0 0
\(157\) −7.00000 7.00000i −0.558661 0.558661i 0.370265 0.928926i \(-0.379267\pi\)
−0.928926 + 0.370265i \(0.879267\pi\)
\(158\) −2.82843 2.82843i −0.225018 0.225018i
\(159\) 0 0
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 0 0
\(162\) 0 0
\(163\) −1.00000 + 1.00000i −0.0783260 + 0.0783260i −0.745184 0.666858i \(-0.767639\pi\)
0.666858 + 0.745184i \(0.267639\pi\)
\(164\) −8.48528 −0.662589
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 19.0000i 1.46154i
\(170\) −2.82843 8.48528i −0.216930 0.650791i
\(171\) 0 0
\(172\) −3.00000 3.00000i −0.228748 0.228748i
\(173\) −4.24264 4.24264i −0.322562 0.322562i 0.527187 0.849749i \(-0.323247\pi\)
−0.849749 + 0.527187i \(0.823247\pi\)
\(174\) 0 0
\(175\) 21.0000 + 3.00000i 1.58745 + 0.226779i
\(176\) 1.41421i 0.106600i
\(177\) 0 0
\(178\) −10.0000 + 10.0000i −0.749532 + 0.749532i
\(179\) −11.3137 −0.845626 −0.422813 0.906217i \(-0.638957\pi\)
−0.422813 + 0.906217i \(0.638957\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) −16.9706 + 16.9706i −1.25794 + 1.25794i
\(183\) 0 0
\(184\) 0 0
\(185\) −16.9706 8.48528i −1.24770 0.623850i
\(186\) 0 0
\(187\) 4.00000 + 4.00000i 0.292509 + 0.292509i
\(188\) 5.65685 + 5.65685i 0.412568 + 0.412568i
\(189\) 0 0
\(190\) −2.00000 1.00000i −0.145095 0.0725476i
\(191\) 24.0416i 1.73959i −0.493412 0.869796i \(-0.664251\pi\)
0.493412 0.869796i \(-0.335749\pi\)
\(192\) 0 0
\(193\) −18.0000 + 18.0000i −1.29567 + 1.29567i −0.364442 + 0.931226i \(0.618740\pi\)
−0.931226 + 0.364442i \(0.881260\pi\)
\(194\) −16.9706 −1.21842
\(195\) 0 0
\(196\) 11.0000 0.785714
\(197\) −15.5563 + 15.5563i −1.10834 + 1.10834i −0.114976 + 0.993368i \(0.536679\pi\)
−0.993368 + 0.114976i \(0.963321\pi\)
\(198\) 0 0
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) 4.94975 + 0.707107i 0.350000 + 0.0500000i
\(201\) 0 0
\(202\) −11.0000 11.0000i −0.773957 0.773957i
\(203\) 8.48528 + 8.48528i 0.595550 + 0.595550i
\(204\) 0 0
\(205\) 6.00000 + 18.0000i 0.419058 + 1.25717i
\(206\) 0 0
\(207\) 0 0
\(208\) −4.00000 + 4.00000i −0.277350 + 0.277350i
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) −1.41421 + 1.41421i −0.0971286 + 0.0971286i
\(213\) 0 0
\(214\) 12.0000i 0.820303i
\(215\) −4.24264 + 8.48528i −0.289346 + 0.578691i
\(216\) 0 0
\(217\) −12.0000 12.0000i −0.814613 0.814613i
\(218\) −1.41421 1.41421i −0.0957826 0.0957826i
\(219\) 0 0
\(220\) −3.00000 + 1.00000i −0.202260 + 0.0674200i
\(221\) 22.6274i 1.52208i
\(222\) 0 0
\(223\) −12.0000 + 12.0000i −0.803579 + 0.803579i −0.983653 0.180074i \(-0.942366\pi\)
0.180074 + 0.983653i \(0.442366\pi\)
\(224\) 4.24264 0.283473
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 8.00000i 0.528655i −0.964433 0.264327i \(-0.914850\pi\)
0.964433 0.264327i \(-0.0851500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.00000 + 2.00000i 0.131306 + 0.131306i
\(233\) −7.07107 7.07107i −0.463241 0.463241i 0.436475 0.899716i \(-0.356227\pi\)
−0.899716 + 0.436475i \(0.856227\pi\)
\(234\) 0 0
\(235\) 8.00000 16.0000i 0.521862 1.04372i
\(236\) 5.65685i 0.368230i
\(237\) 0 0
\(238\) −12.0000 + 12.0000i −0.777844 + 0.777844i
\(239\) −18.3848 −1.18921 −0.594606 0.804017i \(-0.702692\pi\)
−0.594606 + 0.804017i \(0.702692\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −6.36396 + 6.36396i −0.409091 + 0.409091i
\(243\) 0 0
\(244\) 10.0000i 0.640184i
\(245\) −7.77817 23.3345i −0.496929 1.49079i
\(246\) 0 0
\(247\) −4.00000 4.00000i −0.254514 0.254514i
\(248\) −2.82843 2.82843i −0.179605 0.179605i
\(249\) 0 0
\(250\) −2.00000 11.0000i −0.126491 0.695701i
\(251\) 18.3848i 1.16044i −0.814461 0.580218i \(-0.802967\pi\)
0.814461 0.580218i \(-0.197033\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 14.1421 0.887357
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.5563 15.5563i 0.970378 0.970378i −0.0291953 0.999574i \(-0.509294\pi\)
0.999574 + 0.0291953i \(0.00929448\pi\)
\(258\) 0 0
\(259\) 36.0000i 2.23693i
\(260\) 11.3137 + 5.65685i 0.701646 + 0.350823i
\(261\) 0 0
\(262\) −9.00000 9.00000i −0.556022 0.556022i
\(263\) 7.07107 + 7.07107i 0.436021 + 0.436021i 0.890670 0.454650i \(-0.150236\pi\)
−0.454650 + 0.890670i \(0.650236\pi\)
\(264\) 0 0
\(265\) 4.00000 + 2.00000i 0.245718 + 0.122859i
\(266\) 4.24264i 0.260133i
\(267\) 0 0
\(268\) −10.0000 + 10.0000i −0.610847 + 0.610847i
\(269\) 2.82843 0.172452 0.0862261 0.996276i \(-0.472519\pi\)
0.0862261 + 0.996276i \(0.472519\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) −2.82843 + 2.82843i −0.171499 + 0.171499i
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264 + 5.65685i 0.255841 + 0.341121i
\(276\) 0 0
\(277\) 15.0000 + 15.0000i 0.901263 + 0.901263i 0.995545 0.0942828i \(-0.0300558\pi\)
−0.0942828 + 0.995545i \(0.530056\pi\)
\(278\) −9.89949 9.89949i −0.593732 0.593732i
\(279\) 0 0
\(280\) −3.00000 9.00000i −0.179284 0.537853i
\(281\) 22.6274i 1.34984i −0.737892 0.674919i \(-0.764178\pi\)
0.737892 0.674919i \(-0.235822\pi\)
\(282\) 0 0
\(283\) −19.0000 + 19.0000i −1.12943 + 1.12943i −0.139163 + 0.990269i \(0.544441\pi\)
−0.990269 + 0.139163i \(0.955559\pi\)
\(284\) 5.65685 0.335673
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) 25.4558 25.4558i 1.50261 1.50261i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 2.82843 5.65685i 0.166091 0.332182i
\(291\) 0 0
\(292\) 3.00000 + 3.00000i 0.175562 + 0.175562i
\(293\) 12.7279 + 12.7279i 0.743573 + 0.743573i 0.973264 0.229691i \(-0.0737714\pi\)
−0.229691 + 0.973264i \(0.573771\pi\)
\(294\) 0 0
\(295\) −12.0000 + 4.00000i −0.698667 + 0.232889i
\(296\) 8.48528i 0.493197i
\(297\) 0 0
\(298\) −13.0000 + 13.0000i −0.753070 + 0.753070i
\(299\) 0 0
\(300\) 0 0
\(301\) 18.0000 1.03750
\(302\) 11.3137 11.3137i 0.651031 0.651031i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) −21.2132 + 7.07107i −1.21466 + 0.404888i
\(306\) 0 0
\(307\) −10.0000 10.0000i −0.570730 0.570730i 0.361602 0.932332i \(-0.382230\pi\)
−0.932332 + 0.361602i \(0.882230\pi\)
\(308\) 4.24264 + 4.24264i 0.241747 + 0.241747i
\(309\) 0 0
\(310\) −4.00000 + 8.00000i −0.227185 + 0.454369i
\(311\) 21.2132i 1.20289i 0.798914 + 0.601445i \(0.205408\pi\)
−0.798914 + 0.601445i \(0.794592\pi\)
\(312\) 0 0
\(313\) −7.00000 + 7.00000i −0.395663 + 0.395663i −0.876700 0.481037i \(-0.840260\pi\)
0.481037 + 0.876700i \(0.340260\pi\)
\(314\) 9.89949 0.558661
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 4.24264 4.24264i 0.238290 0.238290i −0.577851 0.816142i \(-0.696109\pi\)
0.816142 + 0.577851i \(0.196109\pi\)
\(318\) 0 0
\(319\) 4.00000i 0.223957i
\(320\) −0.707107 2.12132i −0.0395285 0.118585i
\(321\) 0 0
\(322\) 0 0
\(323\) −2.82843 2.82843i −0.157378 0.157378i
\(324\) 0 0
\(325\) 4.00000 28.0000i 0.221880 1.55316i
\(326\) 1.41421i 0.0783260i
\(327\) 0 0
\(328\) 6.00000 6.00000i 0.331295 0.331295i
\(329\) −33.9411 −1.87123
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 4.24264 4.24264i 0.232845 0.232845i
\(333\) 0 0
\(334\) 0 0
\(335\) 28.2843 + 14.1421i 1.54533 + 0.772667i
\(336\) 0 0
\(337\) −12.0000 12.0000i −0.653682 0.653682i 0.300196 0.953878i \(-0.402948\pi\)
−0.953878 + 0.300196i \(0.902948\pi\)
\(338\) 13.4350 + 13.4350i 0.730769 + 0.730769i
\(339\) 0 0
\(340\) 8.00000 + 4.00000i 0.433861 + 0.216930i
\(341\) 5.65685i 0.306336i
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 4.24264 0.228748
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 21.2132 21.2132i 1.13878 1.13878i 0.150116 0.988668i \(-0.452035\pi\)
0.988668 0.150116i \(-0.0479647\pi\)
\(348\) 0 0
\(349\) 12.0000i 0.642345i −0.947021 0.321173i \(-0.895923\pi\)
0.947021 0.321173i \(-0.104077\pi\)
\(350\) −16.9706 + 12.7279i −0.907115 + 0.680336i
\(351\) 0 0
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) −12.7279 12.7279i −0.677439 0.677439i 0.281981 0.959420i \(-0.409008\pi\)
−0.959420 + 0.281981i \(0.909008\pi\)
\(354\) 0 0
\(355\) −4.00000 12.0000i −0.212298 0.636894i
\(356\) 14.1421i 0.749532i
\(357\) 0 0
\(358\) 8.00000 8.00000i 0.422813 0.422813i
\(359\) 12.7279 0.671754 0.335877 0.941906i \(-0.390967\pi\)
0.335877 + 0.941906i \(0.390967\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −12.7279 + 12.7279i −0.668965 + 0.668965i
\(363\) 0 0
\(364\) 24.0000i 1.25794i
\(365\) 4.24264 8.48528i 0.222070 0.444140i
\(366\) 0 0
\(367\) −15.0000 15.0000i −0.782994 0.782994i 0.197341 0.980335i \(-0.436769\pi\)
−0.980335 + 0.197341i \(0.936769\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 18.0000 6.00000i 0.935775 0.311925i
\(371\) 8.48528i 0.440534i
\(372\) 0 0
\(373\) 24.0000 24.0000i 1.24267 1.24267i 0.283785 0.958888i \(-0.408410\pi\)
0.958888 0.283785i \(-0.0915902\pi\)
\(374\) −5.65685 −0.292509
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) 11.3137 11.3137i 0.582686 0.582686i
\(378\) 0 0
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) 2.12132 0.707107i 0.108821 0.0362738i
\(381\) 0 0
\(382\) 17.0000 + 17.0000i 0.869796 + 0.869796i
\(383\) 19.7990 + 19.7990i 1.01168 + 1.01168i 0.999931 + 0.0117502i \(0.00374028\pi\)
0.0117502 + 0.999931i \(0.496260\pi\)
\(384\) 0 0
\(385\) 6.00000 12.0000i 0.305788 0.611577i
\(386\) 25.4558i 1.29567i
\(387\) 0 0
\(388\) 12.0000 12.0000i 0.609208 0.609208i
\(389\) 1.41421 0.0717035 0.0358517 0.999357i \(-0.488586\pi\)
0.0358517 + 0.999357i \(0.488586\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −7.77817 + 7.77817i −0.392857 + 0.392857i
\(393\) 0 0
\(394\) 22.0000i 1.10834i
\(395\) −2.82843 8.48528i −0.142314 0.426941i
\(396\) 0 0
\(397\) −15.0000 15.0000i −0.752828 0.752828i 0.222178 0.975006i \(-0.428683\pi\)
−0.975006 + 0.222178i \(0.928683\pi\)
\(398\) −1.41421 1.41421i −0.0708881 0.0708881i
\(399\) 0 0
\(400\) −4.00000 + 3.00000i −0.200000 + 0.150000i
\(401\) 11.3137i 0.564980i 0.959270 + 0.282490i \(0.0911603\pi\)
−0.959270 + 0.282490i \(0.908840\pi\)
\(402\) 0 0
\(403\) −16.0000 + 16.0000i −0.797017 + 0.797017i
\(404\) 15.5563 0.773957
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) −8.48528 + 8.48528i −0.420600 + 0.420600i
\(408\) 0 0
\(409\) 14.0000i 0.692255i 0.938187 + 0.346128i \(0.112504\pi\)
−0.938187 + 0.346128i \(0.887496\pi\)
\(410\) −16.9706 8.48528i −0.838116 0.419058i
\(411\) 0 0
\(412\) 0 0
\(413\) 16.9706 + 16.9706i 0.835067 + 0.835067i
\(414\) 0 0
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 5.65685i 0.277350i
\(417\) 0 0
\(418\) −1.00000 + 1.00000i −0.0489116 + 0.0489116i
\(419\) −26.8701 −1.31269 −0.656344 0.754462i \(-0.727898\pi\)
−0.656344 + 0.754462i \(0.727898\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −11.3137 + 11.3137i −0.550743 + 0.550743i
\(423\) 0 0
\(424\) 2.00000i 0.0971286i
\(425\) 2.82843 19.7990i 0.137199 0.960392i
\(426\) 0 0
\(427\) 30.0000 + 30.0000i 1.45180 + 1.45180i
\(428\) −8.48528 8.48528i −0.410152 0.410152i
\(429\) 0 0
\(430\) −3.00000 9.00000i −0.144673 0.434019i
\(431\) 19.7990i 0.953684i −0.878989 0.476842i \(-0.841781\pi\)
0.878989 0.476842i \(-0.158219\pi\)
\(432\) 0 0
\(433\) −6.00000 + 6.00000i −0.288342 + 0.288342i −0.836424 0.548083i \(-0.815358\pi\)
0.548083 + 0.836424i \(0.315358\pi\)
\(434\) 16.9706 0.814613
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 16.0000i 0.763638i 0.924237 + 0.381819i \(0.124702\pi\)
−0.924237 + 0.381819i \(0.875298\pi\)
\(440\) 1.41421 2.82843i 0.0674200 0.134840i
\(441\) 0 0
\(442\) 16.0000 + 16.0000i 0.761042 + 0.761042i
\(443\) −25.4558 25.4558i −1.20944 1.20944i −0.971207 0.238236i \(-0.923431\pi\)
−0.238236 0.971207i \(-0.576569\pi\)
\(444\) 0 0
\(445\) −30.0000 + 10.0000i −1.42214 + 0.474045i
\(446\) 16.9706i 0.803579i
\(447\) 0 0
\(448\) −3.00000 + 3.00000i −0.141737 + 0.141737i
\(449\) 36.7696 1.73526 0.867631 0.497208i \(-0.165642\pi\)
0.867631 + 0.497208i \(0.165642\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 1.41421 1.41421i 0.0665190 0.0665190i
\(453\) 0 0
\(454\) 0 0
\(455\) −50.9117 + 16.9706i −2.38678 + 0.795592i
\(456\) 0 0
\(457\) −17.0000 17.0000i −0.795226 0.795226i 0.187112 0.982339i \(-0.440087\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 5.65685 + 5.65685i 0.264327 + 0.264327i
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0416i 1.11973i −0.828584 0.559865i \(-0.810853\pi\)
0.828584 0.559865i \(-0.189147\pi\)
\(462\) 0 0
\(463\) −15.0000 + 15.0000i −0.697109 + 0.697109i −0.963786 0.266677i \(-0.914074\pi\)
0.266677 + 0.963786i \(0.414074\pi\)
\(464\) −2.82843 −0.131306
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) 25.4558 25.4558i 1.17796 1.17796i 0.197692 0.980264i \(-0.436655\pi\)
0.980264 0.197692i \(-0.0633445\pi\)
\(468\) 0 0
\(469\) 60.0000i 2.77054i
\(470\) 5.65685 + 16.9706i 0.260931 + 0.782794i
\(471\) 0 0
\(472\) 4.00000 + 4.00000i 0.184115 + 0.184115i
\(473\) 4.24264 + 4.24264i 0.195077 + 0.195077i
\(474\) 0 0
\(475\) −3.00000 4.00000i −0.137649 0.183533i
\(476\) 16.9706i 0.777844i
\(477\) 0 0
\(478\) 13.0000 13.0000i 0.594606 0.594606i
\(479\) −1.41421 −0.0646171 −0.0323085 0.999478i \(-0.510286\pi\)
−0.0323085 + 0.999478i \(0.510286\pi\)
\(480\) 0 0
\(481\) 48.0000 2.18861
\(482\) 7.07107 7.07107i 0.322078 0.322078i
\(483\) 0 0
\(484\) 9.00000i 0.409091i
\(485\) −33.9411 16.9706i −1.54119 0.770594i
\(486\) 0 0
\(487\) −28.0000 28.0000i −1.26880 1.26880i −0.946708 0.322093i \(-0.895614\pi\)
−0.322093 0.946708i \(-0.604386\pi\)
\(488\) 7.07107 + 7.07107i 0.320092 + 0.320092i
\(489\) 0 0
\(490\) 22.0000 + 11.0000i 0.993859 + 0.496929i
\(491\) 7.07107i 0.319113i 0.987189 + 0.159556i \(0.0510064\pi\)
−0.987189 + 0.159556i \(0.948994\pi\)
\(492\) 0 0
\(493\) 8.00000 8.00000i 0.360302 0.360302i
\(494\) 5.65685 0.254514
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −16.9706 + 16.9706i −0.761234 + 0.761234i
\(498\) 0 0
\(499\) 30.0000i 1.34298i 0.741012 + 0.671492i \(0.234346\pi\)
−0.741012 + 0.671492i \(0.765654\pi\)
\(500\) 9.19239 + 6.36396i 0.411096 + 0.284605i
\(501\) 0 0
\(502\) 13.0000 + 13.0000i 0.580218 + 0.580218i
\(503\) −1.41421 1.41421i −0.0630567 0.0630567i 0.674875 0.737932i \(-0.264197\pi\)
−0.737932 + 0.674875i \(0.764197\pi\)
\(504\) 0 0
\(505\) −11.0000 33.0000i −0.489494 1.46848i
\(506\) 0 0
\(507\) 0 0
\(508\) −10.0000 + 10.0000i −0.443678 + 0.443678i
\(509\) 16.9706 0.752207 0.376103 0.926578i \(-0.377264\pi\)
0.376103 + 0.926578i \(0.377264\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 22.0000i 0.970378i
\(515\) 0 0
\(516\) 0 0
\(517\) −8.00000 8.00000i −0.351840 0.351840i
\(518\) −25.4558 25.4558i −1.11847 1.11847i
\(519\) 0 0
\(520\) −12.0000 + 4.00000i −0.526235 + 0.175412i
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) 0 0
\(523\) 8.00000 8.00000i 0.349816 0.349816i −0.510225 0.860041i \(-0.670438\pi\)
0.860041 + 0.510225i \(0.170438\pi\)
\(524\) 12.7279 0.556022
\(525\) 0 0
\(526\) −10.0000 −0.436021
\(527\) −11.3137 + 11.3137i −0.492833 + 0.492833i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) −4.24264 + 1.41421i −0.184289 + 0.0614295i
\(531\) 0 0
\(532\) −3.00000 3.00000i −0.130066 0.130066i
\(533\) −33.9411 33.9411i −1.47015 1.47015i
\(534\) 0 0
\(535\) −12.0000 + 24.0000i −0.518805 + 1.03761i
\(536\) 14.1421i 0.610847i
\(537\) 0 0
\(538\) −2.00000 + 2.00000i −0.0862261 + 0.0862261i
\(539\) −15.5563 −0.670059
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 9.89949 9.89949i 0.425220 0.425220i
\(543\) 0 0
\(544\) 4.00000i 0.171499i
\(545\) −1.41421 4.24264i −0.0605783 0.181735i
\(546\) 0 0
\(547\) −18.0000 18.0000i −0.769624 0.769624i 0.208416 0.978040i \(-0.433169\pi\)
−0.978040 + 0.208416i \(0.933169\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −7.00000 1.00000i −0.298481 0.0426401i
\(551\) 2.82843i 0.120495i
\(552\) 0 0
\(553\) −12.0000 + 12.0000i −0.510292 + 0.510292i
\(554\) −21.2132 −0.901263
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) 12.7279 12.7279i 0.539299 0.539299i −0.384024 0.923323i \(-0.625462\pi\)
0.923323 + 0.384024i \(0.125462\pi\)
\(558\) 0 0
\(559\) 24.0000i 1.01509i
\(560\) 8.48528 + 4.24264i 0.358569 + 0.179284i
\(561\) 0 0
\(562\) 16.0000 + 16.0000i 0.674919 + 0.674919i
\(563\) 11.3137 + 11.3137i 0.476816 + 0.476816i 0.904112 0.427296i \(-0.140534\pi\)
−0.427296 + 0.904112i \(0.640534\pi\)
\(564\) 0 0
\(565\) −4.00000 2.00000i −0.168281 0.0841406i
\(566\) 26.8701i 1.12943i
\(567\) 0 0
\(568\) −4.00000 + 4.00000i −0.167836 + 0.167836i
\(569\) −31.1127 −1.30431 −0.652156 0.758085i \(-0.726135\pi\)
−0.652156 + 0.758085i \(0.726135\pi\)
\(570\) 0 0
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 5.65685 5.65685i 0.236525 0.236525i
\(573\) 0 0
\(574\) 36.0000i 1.50261i
\(575\) 0 0
\(576\) 0 0
\(577\) −15.0000 15.0000i −0.624458 0.624458i 0.322210 0.946668i \(-0.395574\pi\)
−0.946668 + 0.322210i \(0.895574\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 0 0
\(580\) 2.00000 + 6.00000i 0.0830455 + 0.249136i
\(581\) 25.4558i 1.05609i
\(582\) 0 0
\(583\) 2.00000 2.00000i 0.0828315 0.0828315i
\(584\) −4.24264 −0.175562
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −8.48528 + 8.48528i −0.350225 + 0.350225i −0.860193 0.509968i \(-0.829657\pi\)
0.509968 + 0.860193i \(0.329657\pi\)
\(588\) 0 0
\(589\) 4.00000i 0.164817i
\(590\) 5.65685 11.3137i 0.232889 0.465778i
\(591\) 0 0
\(592\) −6.00000 6.00000i −0.246598 0.246598i
\(593\) −25.4558 25.4558i −1.04535 1.04535i −0.998922 0.0464244i \(-0.985217\pi\)
−0.0464244 0.998922i \(-0.514783\pi\)
\(594\) 0 0
\(595\) −36.0000 + 12.0000i −1.47586 + 0.491952i
\(596\) 18.3848i 0.753070i
\(597\) 0 0
\(598\) 0 0
\(599\) −25.4558 −1.04010 −0.520049 0.854137i \(-0.674086\pi\)
−0.520049 + 0.854137i \(0.674086\pi\)
\(600\) 0 0
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) −12.7279 + 12.7279i −0.518751 + 0.518751i
\(603\) 0 0
\(604\) 16.0000i 0.651031i
\(605\) −19.0919 + 6.36396i −0.776195 + 0.258732i
\(606\) 0 0
\(607\) 8.00000 + 8.00000i 0.324710 + 0.324710i 0.850571 0.525861i \(-0.176257\pi\)
−0.525861 + 0.850571i \(0.676257\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) 0 0
\(610\) 10.0000 20.0000i 0.404888 0.809776i
\(611\) 45.2548i 1.83081i
\(612\) 0 0
\(613\) 29.0000 29.0000i 1.17130 1.17130i 0.189399 0.981900i \(-0.439346\pi\)
0.981900 0.189399i \(-0.0606539\pi\)
\(614\) 14.1421 0.570730
\(615\) 0 0
\(616\) −6.00000 −0.241747
\(617\) 8.48528 8.48528i 0.341605 0.341605i −0.515366 0.856970i \(-0.672344\pi\)
0.856970 + 0.515366i \(0.172344\pi\)
\(618\) 0 0
\(619\) 30.0000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(620\) −2.82843 8.48528i −0.113592 0.340777i
\(621\) 0 0
\(622\) −15.0000 15.0000i −0.601445 0.601445i
\(623\) 42.4264 + 42.4264i 1.69978 + 1.69978i
\(624\) 0 0
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) 9.89949i 0.395663i
\(627\) 0 0
\(628\) −7.00000 + 7.00000i −0.279330 + 0.279330i
\(629\) 33.9411 1.35332
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) −2.82843 + 2.82843i −0.112509 + 0.112509i
\(633\) 0 0
\(634\) 6.00000i 0.238290i
\(635\) 28.2843 + 14.1421i 1.12243 + 0.561214i
\(636\) 0 0
\(637\) 44.0000 + 44.0000i 1.74334 + 1.74334i
\(638\) −2.82843 2.82843i −0.111979 0.111979i
\(639\) 0 0
\(640\) 2.00000 + 1.00000i 0.0790569 + 0.0395285i
\(641\) 2.82843i 0.111716i 0.998439 + 0.0558581i \(0.0177894\pi\)
−0.998439 + 0.0558581i \(0.982211\pi\)
\(642\) 0 0
\(643\) 19.0000 19.0000i 0.749287 0.749287i −0.225058 0.974345i \(-0.572257\pi\)
0.974345 + 0.225058i \(0.0722573\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) −32.5269 + 32.5269i −1.27876 + 1.27876i −0.337405 + 0.941359i \(0.609549\pi\)
−0.941359 + 0.337405i \(0.890451\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) 16.9706 + 22.6274i 0.665640 + 0.887520i
\(651\) 0 0
\(652\) 1.00000 + 1.00000i 0.0391630 + 0.0391630i
\(653\) −25.4558 25.4558i −0.996164 0.996164i 0.00382851 0.999993i \(-0.498781\pi\)
−0.999993 + 0.00382851i \(0.998781\pi\)
\(654\) 0 0
\(655\) −9.00000 27.0000i −0.351659 1.05498i
\(656\) 8.48528i 0.331295i
\(657\) 0 0
\(658\) 24.0000 24.0000i 0.935617 0.935617i
\(659\) 25.4558 0.991619 0.495809 0.868431i \(-0.334871\pi\)
0.495809 + 0.868431i \(0.334871\pi\)
\(660\) 0 0
\(661\) 34.0000 1.32245 0.661223 0.750189i \(-0.270038\pi\)
0.661223 + 0.750189i \(0.270038\pi\)
\(662\) −8.48528 + 8.48528i −0.329790 + 0.329790i
\(663\) 0 0
\(664\) 6.00000i 0.232845i
\(665\) −4.24264 + 8.48528i −0.164523 + 0.329045i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −30.0000 + 10.0000i −1.15900 + 0.386334i
\(671\) 14.1421i 0.545951i
\(672\) 0 0
\(673\) 12.0000 12.0000i 0.462566 0.462566i −0.436930 0.899496i \(-0.643934\pi\)
0.899496 + 0.436930i \(0.143934\pi\)
\(674\) 16.9706 0.653682
\(675\) 0 0
\(676\) −19.0000 −0.730769
\(677\) −4.24264 + 4.24264i −0.163058 + 0.163058i −0.783920 0.620862i \(-0.786783\pi\)
0.620862 + 0.783920i \(0.286783\pi\)
\(678\) 0 0
\(679\) 72.0000i 2.76311i
\(680\) −8.48528 + 2.82843i −0.325396 + 0.108465i
\(681\) 0 0
\(682\) 4.00000 + 4.00000i 0.153168 + 0.153168i
\(683\) 28.2843 + 28.2843i 1.08227 + 1.08227i 0.996298 + 0.0859698i \(0.0273989\pi\)
0.0859698 + 0.996298i \(0.472601\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) −3.00000 + 3.00000i −0.114374 + 0.114374i
\(689\) −11.3137 −0.431018
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) −4.24264 + 4.24264i −0.161281 + 0.161281i
\(693\) 0 0
\(694\) 30.0000i 1.13878i
\(695\) −9.89949 29.6985i −0.375509 1.12653i
\(696\) 0 0
\(697\) −24.0000 24.0000i −0.909065 0.909065i
\(698\) 8.48528 + 8.48528i 0.321173 + 0.321173i
\(699\) 0 0
\(700\) 3.00000 21.0000i 0.113389 0.793725i
\(701\) 38.1838i 1.44218i 0.692841 + 0.721090i \(0.256359\pi\)
−0.692841 + 0.721090i \(0.743641\pi\)
\(702\) 0 0
\(703\) 6.00000 6.00000i 0.226294 0.226294i
\(704\) −1.41421 −0.0533002
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −46.6690 + 46.6690i −1.75517 + 1.75517i
\(708\) 0 0
\(709\) 32.0000i 1.20179i 0.799330 + 0.600893i \(0.205188\pi\)
−0.799330 + 0.600893i \(0.794812\pi\)
\(710\) 11.3137 + 5.65685i 0.424596 + 0.212298i
\(711\) 0 0
\(712\) 10.0000 + 10.0000i 0.374766 + 0.374766i
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0000 8.00000i −0.598366 0.299183i
\(716\) 11.3137i 0.422813i
\(717\) 0 0
\(718\) −9.00000 + 9.00000i −0.335877 + 0.335877i
\(719\) −9.89949 −0.369189 −0.184594 0.982815i \(-0.559097\pi\)
−0.184594 + 0.982815i \(0.559097\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.707107 0.707107i 0.0263158 0.0263158i
\(723\) 0 0
\(724\) 18.0000i 0.668965i
\(725\) 11.3137 8.48528i 0.420181 0.315135i
\(726\) 0 0
\(727\) 11.0000 + 11.0000i 0.407967 + 0.407967i 0.881029 0.473062i \(-0.156851\pi\)
−0.473062 + 0.881029i \(0.656851\pi\)
\(728\) 16.9706 + 16.9706i 0.628971 + 0.628971i
\(729\) 0 0
\(730\) 3.00000 + 9.00000i 0.111035 + 0.333105i
\(731\) 16.9706i 0.627679i
\(732\) 0 0
\(733\) −21.0000 + 21.0000i −0.775653 + 0.775653i −0.979088 0.203436i \(-0.934789\pi\)
0.203436 + 0.979088i \(0.434789\pi\)
\(734\) 21.2132 0.782994
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1421 14.1421i 0.520932 0.520932i
\(738\) 0 0
\(739\) 20.0000i 0.735712i −0.929883 0.367856i \(-0.880092\pi\)
0.929883 0.367856i \(-0.119908\pi\)
\(740\) −8.48528 + 16.9706i −0.311925 + 0.623850i
\(741\) 0 0
\(742\) 6.00000 + 6.00000i 0.220267 + 0.220267i
\(743\) 33.9411 + 33.9411i 1.24518 + 1.24518i 0.957824 + 0.287355i \(0.0927759\pi\)
0.287355 + 0.957824i \(0.407224\pi\)
\(744\) 0 0
\(745\) −39.0000 + 13.0000i −1.42885 + 0.476283i
\(746\) 33.9411i 1.24267i
\(747\) 0 0
\(748\) 4.00000 4.00000i 0.146254 0.146254i
\(749\) 50.9117 1.86027
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 5.65685 5.65685i 0.206284 0.206284i
\(753\) 0 0
\(754\) 16.0000i 0.582686i
\(755\) 33.9411 11.3137i 1.23524 0.411748i
\(756\) 0 0
\(757\) 19.0000 + 19.0000i 0.690567 + 0.690567i 0.962357 0.271790i \(-0.0876156\pi\)
−0.271790 + 0.962357i \(0.587616\pi\)
\(758\) −5.65685 5.65685i −0.205466 0.205466i
\(759\) 0 0
\(760\) −1.00000 + 2.00000i −0.0362738 + 0.0725476i
\(761\) 21.2132i 0.768978i 0.923130 + 0.384489i \(0.125622\pi\)
−0.923130 + 0.384489i \(0.874378\pi\)
\(762\) 0 0
\(763\) −6.00000 + 6.00000i −0.217215 + 0.217215i
\(764\) −24.0416 −0.869796
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 22.6274 22.6274i 0.817029 0.817029i
\(768\) 0 0
\(769\) 16.0000i 0.576975i 0.957484 + 0.288487i \(0.0931523\pi\)
−0.957484 + 0.288487i \(0.906848\pi\)
\(770\) 4.24264 + 12.7279i 0.152894 + 0.458682i
\(771\) 0 0
\(772\) 18.0000 + 18.0000i 0.647834 + 0.647834i
\(773\) 18.3848 + 18.3848i 0.661254 + 0.661254i 0.955676 0.294421i \(-0.0951269\pi\)
−0.294421 + 0.955676i \(0.595127\pi\)
\(774\) 0 0
\(775\) −16.0000 + 12.0000i −0.574737 + 0.431053i
\(776\) 16.9706i 0.609208i
\(777\) 0 0
\(778\) −1.00000 + 1.00000i −0.0358517 + 0.0358517i
\(779\) −8.48528 −0.304017
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 11.0000i 0.392857i
\(785\) 19.7990 + 9.89949i 0.706656 + 0.353328i
\(786\) 0 0
\(787\) −28.0000 28.0000i −0.998092 0.998092i 0.00190598 0.999998i \(-0.499393\pi\)
−0.999998 + 0.00190598i \(0.999393\pi\)
\(788\) 15.5563 + 15.5563i 0.554172 + 0.554172i
\(789\) 0 0
\(790\) 8.00000 + 4.00000i 0.284627 + 0.142314i
\(791\) 8.48528i 0.301702i
\(792\) 0 0
\(793\) 40.0000 40.0000i 1.42044 1.42044i
\(794\) 21.2132 0.752828
\(795\) 0 0
\(796\) 2.00000 0.0708881
\(797\) 15.5563 15.5563i 0.551034 0.551034i −0.375705 0.926739i \(-0.622599\pi\)
0.926739 + 0.375705i \(0.122599\pi\)
\(798\) 0 0
\(799\) 32.0000i 1.13208i
\(800\) 0.707107 4.94975i 0.0250000 0.175000i
\(801\) 0 0
\(802\) −8.00000 8.00000i −0.282490 0.282490i
\(803\) −4.24264 4.24264i −0.149720 0.149720i
\(804\) 0 0
\(805\) 0 0
\(806\) 22.6274i 0.797017i
\(807\) 0 0
\(808\) −11.0000 + 11.0000i −0.386979 + 0.386979i
\(809\) −26.8701 −0.944701 −0.472350 0.881411i \(-0.656594\pi\)
−0.472350 + 0.881411i \(0.656594\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 8.48528 8.48528i 0.297775 0.297775i
\(813\) 0 0
\(814\) 12.0000i 0.420600i
\(815\) 1.41421 2.82843i 0.0495377 0.0990755i
\(816\) 0 0
\(817\) −3.00000 3.00000i −0.104957 0.104957i
\(818\) −9.89949 9.89949i −0.346128 0.346128i
\(819\) 0 0
\(820\) 18.0000 6.00000i 0.628587 0.209529i
\(821\) 26.8701i 0.937771i 0.883259 + 0.468886i \(0.155344\pi\)
−0.883259 + 0.468886i \(0.844656\pi\)
\(822\) 0 0
\(823\) 25.0000 25.0000i 0.871445 0.871445i −0.121185 0.992630i \(-0.538669\pi\)
0.992630 + 0.121185i \(0.0386693\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) −14.1421 + 14.1421i −0.491770 + 0.491770i −0.908864 0.417093i \(-0.863049\pi\)
0.417093 + 0.908864i \(0.363049\pi\)
\(828\) 0 0
\(829\) 6.00000i 0.208389i 0.994557 + 0.104194i \(0.0332264\pi\)
−0.994557 + 0.104194i \(0.966774\pi\)
\(830\) 12.7279 4.24264i 0.441793 0.147264i
\(831\) 0 0
\(832\) 4.00000 + 4.00000i 0.138675 + 0.138675i
\(833\) 31.1127 + 31.1127i 1.07799 + 1.07799i
\(834\) 0 0
\(835\) 0 0
\(836\) 1.41421i 0.0489116i
\(837\) 0 0
\(838\) 19.0000 19.0000i 0.656344 0.656344i
\(839\) −33.9411 −1.17178 −0.585889 0.810391i \(-0.699255\pi\)
−0.585889 + 0.810391i \(0.699255\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) −1.41421 + 1.41421i −0.0487370 + 0.0487370i
\(843\) 0 0
\(844\) 16.0000i 0.550743i
\(845\) 13.4350 + 40.3051i 0.462179 + 1.38654i
\(846\) 0 0
\(847\) 27.0000 + 27.0000i 0.927731 + 0.927731i
\(848\) 1.41421 + 1.41421i 0.0485643 + 0.0485643i
\(849\) 0 0
\(850\) 12.0000 + 16.0000i 0.411597 + 0.548795i
\(851\) 0 0
\(852\) 0 0
\(853\) −23.0000 + 23.0000i −0.787505 + 0.787505i −0.981085 0.193580i \(-0.937990\pi\)
0.193580 + 0.981085i \(0.437990\pi\)
\(854\) −42.4264 −1.45180
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −12.7279 + 12.7279i −0.434778 + 0.434778i −0.890250 0.455472i \(-0.849470\pi\)
0.455472 + 0.890250i \(0.349470\pi\)
\(858\) 0 0
\(859\) 28.0000i 0.955348i −0.878537 0.477674i \(-0.841480\pi\)
0.878537 0.477674i \(-0.158520\pi\)
\(860\) 8.48528 + 4.24264i 0.289346 + 0.144673i
\(861\) 0 0
\(862\) 14.0000 + 14.0000i 0.476842 + 0.476842i
\(863\) −2.82843 2.82843i −0.0962808 0.0962808i 0.657326 0.753607i \(-0.271688\pi\)
−0.753607 + 0.657326i \(0.771688\pi\)
\(864\) 0 0
\(865\) 12.0000 + 6.00000i 0.408012 + 0.204006i
\(866\) 8.48528i 0.288342i
\(867\) 0 0
\(868\) −12.0000 + 12.0000i −0.407307 + 0.407307i
\(869\) −5.65685 −0.191896
\(870\) 0 0
\(871\) −80.0000 −2.71070
\(872\) −1.41421 + 1.41421i −0.0478913 + 0.0478913i
\(873\) 0 0
\(874\) 0 0
\(875\) −46.6690 + 8.48528i −1.57770 + 0.286855i
\(876\) 0 0
\(877\) 36.0000 + 36.0000i 1.21563 + 1.21563i 0.969146 + 0.246488i \(0.0792765\pi\)
0.246488 + 0.969146i \(0.420724\pi\)
\(878\) −11.3137 11.3137i −0.381819 0.381819i
\(879\) 0 0
\(880\) 1.00000 + 3.00000i 0.0337100 + 0.101130i
\(881\) 32.5269i 1.09586i −0.836524 0.547930i \(-0.815416\pi\)
0.836524 0.547930i \(-0.184584\pi\)
\(882\) 0 0
\(883\) 21.0000 21.0000i 0.706706 0.706706i −0.259135 0.965841i \(-0.583437\pi\)
0.965841 + 0.259135i \(0.0834374\pi\)
\(884\) −22.6274 −0.761042
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) 8.48528 8.48528i 0.284908 0.284908i −0.550155 0.835063i \(-0.685431\pi\)
0.835063 + 0.550155i \(0.185431\pi\)
\(888\) 0 0
\(889\) 60.0000i 2.01234i
\(890\) 14.1421 28.2843i 0.474045 0.948091i
\(891\) 0 0
\(892\) 12.0000 + 12.0000i 0.401790 + 0.401790i
\(893\) 5.65685 + 5.65685i 0.189299 + 0.189299i
\(894\) 0 0
\(895\) 24.0000 8.00000i 0.802232 0.267411i
\(896\) 4.24264i 0.141737i
\(897\) 0 0
\(898\) −26.0000 + 26.0000i −0.867631 + 0.867631i
\(899\) −11.3137 −0.377333
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) −8.48528 + 8.48528i −0.282529 + 0.282529i
\(903\) 0 0
\(904\) 2.00000i 0.0665190i
\(905\) −38.1838 + 12.7279i −1.26927 + 0.423090i
\(906\) 0 0
\(907\) −36.0000 36.0000i −1.19536 1.19536i −0.975540 0.219820i \(-0.929453\pi\)
−0.219820 0.975540i \(-0.570547\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 24.0000 48.0000i 0.795592 1.59118i
\(911\) 5.65685i 0.187420i 0.995600 + 0.0937100i \(0.0298726\pi\)
−0.995600 + 0.0937100i \(0.970127\pi\)
\(912\) 0 0
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) 24.0416 0.795226
\(915\) 0 0
\(916\) −8.00000 −0.264327
\(917\) −38.1838 + 38.1838i −1.26094 + 1.26094i
\(918\) 0 0
\(919\) 48.0000i 1.58337i −0.610927 0.791687i \(-0.709203\pi\)
0.610927 0.791687i \(-0.290797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.0000 + 17.0000i 0.559865 + 0.559865i
\(923\) 22.6274 + 22.6274i 0.744791 + 0.744791i
\(924\) 0 0
\(925\) 42.0000 + 6.00000i 1.38095 + 0.197279i
\(926\) 21.2132i 0.697109i
\(927\) 0 0
\(928\) 2.00000 2.00000i 0.0656532 0.0656532i
\(929\) −41.0122 −1.34557 −0.672783 0.739840i \(-0.734901\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(930\) 0 0
\(931\) 11.0000 0.360510
\(932\) −7.07107 + 7.07107i −0.231621 + 0.231621i
\(933\) 0 0
\(934\) 36.0000i 1.17796i
\(935\) −11.3137 5.65685i −0.369998 0.184999i
\(936\) 0 0
\(937\) −35.0000 35.0000i −1.14340 1.14340i −0.987824 0.155576i \(-0.950277\pi\)
−0.155576 0.987824i \(-0.549723\pi\)
\(938\) 42.4264 + 42.4264i 1.38527 + 1.38527i
\(939\) 0 0
\(940\) −16.0000 8.00000i −0.521862 0.260931i
\(941\) 19.7990i 0.645429i 0.946496 + 0.322714i \(0.104595\pi\)
−0.946496 + 0.322714i \(0.895405\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −5.65685 −0.184115
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) 9.89949 9.89949i 0.321690 0.321690i −0.527725 0.849415i \(-0.676955\pi\)
0.849415 + 0.527725i \(0.176955\pi\)
\(948\) 0 0
\(949\) 24.0000i 0.779073i
\(950\) 4.94975 + 0.707107i 0.160591 + 0.0229416i
\(951\) 0 0
\(952\) 12.0000 + 12.0000i 0.388922 + 0.388922i
\(953\) 4.24264 + 4.24264i 0.137433 + 0.137433i 0.772476 0.635044i \(-0.219018\pi\)
−0.635044 + 0.772476i \(0.719018\pi\)
\(954\) 0 0
\(955\) 17.0000 + 51.0000i 0.550107 + 1.65032i
\(956\) 18.3848i 0.594606i
\(957\) 0 0
\(958\) 1.00000 1.00000i 0.0323085 0.0323085i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −33.9411 + 33.9411i −1.09431 + 1.09431i
\(963\) 0 0
\(964\) 10.0000i 0.322078i
\(965\) 25.4558 50.9117i 0.819453 1.63891i
\(966\) 0 0
\(967\) 9.00000 + 9.00000i 0.289420 + 0.289420i 0.836851 0.547431i \(-0.184394\pi\)
−0.547431 + 0.836851i \(0.684394\pi\)
\(968\) 6.36396 + 6.36396i 0.204545 + 0.204545i
\(969\) 0 0
\(970\) 36.0000 12.0000i 1.15589 0.385297i
\(971\) 8.48528i 0.272306i −0.990688 0.136153i \(-0.956526\pi\)
0.990688 0.136153i \(-0.0434738\pi\)
\(972\) 0 0
\(973\) −42.0000 + 42.0000i −1.34646 + 1.34646i
\(974\) 39.5980 1.26880
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 4.24264 4.24264i 0.135734 0.135734i −0.635975 0.771709i \(-0.719402\pi\)
0.771709 + 0.635975i \(0.219402\pi\)
\(978\) 0 0
\(979\) 20.0000i 0.639203i
\(980\) −23.3345 + 7.77817i −0.745394 + 0.248465i
\(981\) 0 0
\(982\) −5.00000 5.00000i −0.159556 0.159556i
\(983\) −42.4264 42.4264i −1.35319 1.35319i −0.882066 0.471127i \(-0.843847\pi\)
−0.471127 0.882066i \(-0.656153\pi\)
\(984\) 0 0
\(985\) 22.0000 44.0000i 0.700978 1.40196i
\(986\) 11.3137i 0.360302i
\(987\) 0 0
\(988\) −4.00000 + 4.00000i −0.127257 + 0.127257i
\(989\) 0 0
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) −2.82843 + 2.82843i −0.0898027 + 0.0898027i
\(993\) 0 0
\(994\) 24.0000i 0.761234i
\(995\) −1.41421 4.24264i −0.0448336 0.134501i
\(996\) 0 0
\(997\) −1.00000 1.00000i −0.0316703 0.0316703i 0.691094 0.722765i \(-0.257129\pi\)
−0.722765 + 0.691094i \(0.757129\pi\)
\(998\) −21.2132 21.2132i −0.671492 0.671492i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.e.647.1 4
3.2 odd 2 inner 1710.2.n.e.647.2 yes 4
5.3 odd 4 inner 1710.2.n.e.1673.2 yes 4
15.8 even 4 inner 1710.2.n.e.1673.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.e.647.1 4 1.1 even 1 trivial
1710.2.n.e.647.2 yes 4 3.2 odd 2 inner
1710.2.n.e.1673.1 yes 4 15.8 even 4 inner
1710.2.n.e.1673.2 yes 4 5.3 odd 4 inner