Properties

Label 2-1734-1.1-c3-0-109
Degree $2$
Conductor $1734$
Sign $-1$
Analytic cond. $102.309$
Root an. cond. $10.1148$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s − 0.660·5-s − 6·6-s + 1.36·7-s + 8·8-s + 9·9-s − 1.32·10-s + 34.0·11-s − 12·12-s − 38.7·13-s + 2.72·14-s + 1.98·15-s + 16·16-s + 18·18-s − 19.3·19-s − 2.64·20-s − 4.08·21-s + 68.1·22-s − 121.·23-s − 24·24-s − 124.·25-s − 77.5·26-s − 27·27-s + 5.44·28-s + 51.7·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.0590·5-s − 0.408·6-s + 0.0735·7-s + 0.353·8-s + 0.333·9-s − 0.0417·10-s + 0.933·11-s − 0.288·12-s − 0.827·13-s + 0.0519·14-s + 0.0341·15-s + 0.250·16-s + 0.235·18-s − 0.233·19-s − 0.0295·20-s − 0.0424·21-s + 0.660·22-s − 1.09·23-s − 0.204·24-s − 0.996·25-s − 0.585·26-s − 0.192·27-s + 0.0367·28-s + 0.331·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(102.309\)
Root analytic conductor: \(10.1148\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1734,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 + 3T \)
17 \( 1 \)
good5 \( 1 + 0.660T + 125T^{2} \)
7 \( 1 - 1.36T + 343T^{2} \)
11 \( 1 - 34.0T + 1.33e3T^{2} \)
13 \( 1 + 38.7T + 2.19e3T^{2} \)
19 \( 1 + 19.3T + 6.85e3T^{2} \)
23 \( 1 + 121.T + 1.21e4T^{2} \)
29 \( 1 - 51.7T + 2.43e4T^{2} \)
31 \( 1 - 95.5T + 2.97e4T^{2} \)
37 \( 1 - 100.T + 5.06e4T^{2} \)
41 \( 1 + 78.3T + 6.89e4T^{2} \)
43 \( 1 - 32.0T + 7.95e4T^{2} \)
47 \( 1 + 88.7T + 1.03e5T^{2} \)
53 \( 1 + 452.T + 1.48e5T^{2} \)
59 \( 1 - 336.T + 2.05e5T^{2} \)
61 \( 1 - 591.T + 2.26e5T^{2} \)
67 \( 1 + 127.T + 3.00e5T^{2} \)
71 \( 1 + 71.3T + 3.57e5T^{2} \)
73 \( 1 - 477.T + 3.89e5T^{2} \)
79 \( 1 - 203.T + 4.93e5T^{2} \)
83 \( 1 + 1.12e3T + 5.71e5T^{2} \)
89 \( 1 + 920.T + 7.04e5T^{2} \)
97 \( 1 + 295.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.405604950925971271105783958988, −7.62141897662195548723138223579, −6.69923983731111102318145185926, −6.15036599113768432863346237174, −5.25122479166638450961095202500, −4.41118945120876055510552839443, −3.72696279069502685647910759941, −2.46127555117531804633672753116, −1.41813374776463548884666459799, 0, 1.41813374776463548884666459799, 2.46127555117531804633672753116, 3.72696279069502685647910759941, 4.41118945120876055510552839443, 5.25122479166638450961095202500, 6.15036599113768432863346237174, 6.69923983731111102318145185926, 7.62141897662195548723138223579, 8.405604950925971271105783958988

Graph of the $Z$-function along the critical line