L(s) = 1 | + (−4.35 + 2.51i)2-s + (−7.22 − 4.17i)3-s + (8.62 − 14.9i)4-s + 41.9·6-s + (7.81 − 16.7i)7-s + 46.5i·8-s + (21.3 + 36.9i)9-s + (0.444 − 0.769i)11-s + (−124. + 71.9i)12-s + 25.9i·13-s + (8.15 + 92.7i)14-s + (−47.8 − 82.8i)16-s + (83.4 + 48.1i)17-s + (−185. − 107. i)18-s + (−44.5 − 77.1i)19-s + ⋯ |
L(s) = 1 | + (−1.53 + 0.888i)2-s + (−1.39 − 0.802i)3-s + (1.07 − 1.86i)4-s + 2.85·6-s + (0.422 − 0.906i)7-s + 2.05i·8-s + (0.789 + 1.36i)9-s + (0.0121 − 0.0210i)11-s + (−2.99 + 1.73i)12-s + 0.553i·13-s + (0.155 + 1.76i)14-s + (−0.747 − 1.29i)16-s + (1.18 + 0.687i)17-s + (−2.42 − 1.40i)18-s + (−0.537 − 0.931i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0841 + 0.996i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0841 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.284985 - 0.261927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.284985 - 0.261927i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-7.81 + 16.7i)T \) |
good | 2 | \( 1 + (4.35 - 2.51i)T + (4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (7.22 + 4.17i)T + (13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-0.444 + 0.769i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 25.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-83.4 - 48.1i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (44.5 + 77.1i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-100. + 58.2i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 222.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-6.45 + 11.1i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-79.0 + 45.6i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 98.4T + 6.89e4T^{2} \) |
| 43 | \( 1 + 392. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (190. - 110. i)T + (5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (198. + 114. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-6.76 + 11.7i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (102. + 178. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (282. + 162. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 583.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (823. + 475. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-225. - 390. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 164. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-442. - 766. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 62.1iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64459358483245686670225629337, −10.77505920984269955131758489447, −10.17821432633369706685866686519, −8.727833940331947544000708824422, −7.65305452151072126340431801700, −6.88474872694296039142112499195, −6.18391013262816311297379030208, −4.88904828302003257623634326208, −1.44922318786353931893958605411, −0.45172628101231704806514469830,
1.14196292134310775067671760250, 3.05556374144475994004860024213, 4.91821747766078774047149817629, 6.08836786819580304643390178572, 7.68450973847761111023681387073, 8.760746773047692545320799849929, 9.856993838817028459367233246799, 10.36785211604148881299407159564, 11.39286530183300659128128219470, 11.87446230865902794229961742473