L(s) = 1 | + (−4.35 + 2.51i)2-s + (−7.22 − 4.17i)3-s + (8.62 − 14.9i)4-s + 41.9·6-s + (7.81 − 16.7i)7-s + 46.5i·8-s + (21.3 + 36.9i)9-s + (0.444 − 0.769i)11-s + (−124. + 71.9i)12-s + 25.9i·13-s + (8.15 + 92.7i)14-s + (−47.8 − 82.8i)16-s + (83.4 + 48.1i)17-s + (−185. − 107. i)18-s + (−44.5 − 77.1i)19-s + ⋯ |
L(s) = 1 | + (−1.53 + 0.888i)2-s + (−1.39 − 0.802i)3-s + (1.07 − 1.86i)4-s + 2.85·6-s + (0.422 − 0.906i)7-s + 2.05i·8-s + (0.789 + 1.36i)9-s + (0.0121 − 0.0210i)11-s + (−2.99 + 1.73i)12-s + 0.553i·13-s + (0.155 + 1.76i)14-s + (−0.747 − 1.29i)16-s + (1.18 + 0.687i)17-s + (−2.42 − 1.40i)18-s + (−0.537 − 0.931i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.0841+0.996i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.0841+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.0841+0.996i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(74,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.0841+0.996i)
|
Particular Values
L(2) |
≈ |
0.284985−0.261927i |
L(21) |
≈ |
0.284985−0.261927i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(−7.81+16.7i)T |
good | 2 | 1+(4.35−2.51i)T+(4−6.92i)T2 |
| 3 | 1+(7.22+4.17i)T+(13.5+23.3i)T2 |
| 11 | 1+(−0.444+0.769i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−25.9iT−2.19e3T2 |
| 17 | 1+(−83.4−48.1i)T+(2.45e3+4.25e3i)T2 |
| 19 | 1+(44.5+77.1i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−100.+58.2i)T+(6.08e3−1.05e4i)T2 |
| 29 | 1−222.T+2.43e4T2 |
| 31 | 1+(−6.45+11.1i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−79.0+45.6i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+98.4T+6.89e4T2 |
| 43 | 1+392.iT−7.95e4T2 |
| 47 | 1+(190.−110.i)T+(5.19e4−8.99e4i)T2 |
| 53 | 1+(198.+114.i)T+(7.44e4+1.28e5i)T2 |
| 59 | 1+(−6.76+11.7i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(102.+178.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(282.+162.i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1+583.T+3.57e5T2 |
| 73 | 1+(823.+475.i)T+(1.94e5+3.36e5i)T2 |
| 79 | 1+(−225.−390.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+164.iT−5.71e5T2 |
| 89 | 1+(−442.−766.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−62.1iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64459358483245686670225629337, −10.77505920984269955131758489447, −10.17821432633369706685866686519, −8.727833940331947544000708824422, −7.65305452151072126340431801700, −6.88474872694296039142112499195, −6.18391013262816311297379030208, −4.88904828302003257623634326208, −1.44922318786353931893958605411, −0.45172628101231704806514469830,
1.14196292134310775067671760250, 3.05556374144475994004860024213, 4.91821747766078774047149817629, 6.08836786819580304643390178572, 7.68450973847761111023681387073, 8.760746773047692545320799849929, 9.856993838817028459367233246799, 10.36785211604148881299407159564, 11.39286530183300659128128219470, 11.87446230865902794229961742473