L(s) = 1 | + (3.33 + 1.92i)2-s + (−7.76 + 4.48i)3-s + (3.39 + 5.88i)4-s − 34.4·6-s + (−13.8 − 12.3i)7-s − 4.64i·8-s + (26.7 − 46.2i)9-s + (−11.5 − 20.0i)11-s + (−52.7 − 30.4i)12-s + 61.0i·13-s + (−22.2 − 67.6i)14-s + (36.0 − 62.5i)16-s + (−0.596 + 0.344i)17-s + (177. − 102. i)18-s + (31.6 − 54.7i)19-s + ⋯ |
L(s) = 1 | + (1.17 + 0.679i)2-s + (−1.49 + 0.862i)3-s + (0.424 + 0.735i)4-s − 2.34·6-s + (−0.745 − 0.666i)7-s − 0.205i·8-s + (0.989 − 1.71i)9-s + (−0.316 − 0.548i)11-s + (−1.26 − 0.732i)12-s + 1.30i·13-s + (−0.424 − 1.29i)14-s + (0.564 − 0.976i)16-s + (−0.00850 + 0.00490i)17-s + (2.33 − 1.34i)18-s + (0.381 − 0.661i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.315+0.949i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.315+0.949i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.315+0.949i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.315+0.949i)
|
Particular Values
L(2) |
≈ |
0.493707−0.356276i |
L(21) |
≈ |
0.493707−0.356276i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(13.8+12.3i)T |
good | 2 | 1+(−3.33−1.92i)T+(4+6.92i)T2 |
| 3 | 1+(7.76−4.48i)T+(13.5−23.3i)T2 |
| 11 | 1+(11.5+20.0i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−61.0iT−2.19e3T2 |
| 17 | 1+(0.596−0.344i)T+(2.45e3−4.25e3i)T2 |
| 19 | 1+(−31.6+54.7i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(107.+62.2i)T+(6.08e3+1.05e4i)T2 |
| 29 | 1+104.T+2.43e4T2 |
| 31 | 1+(140.+242.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(228.+131.i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1+243.T+6.89e4T2 |
| 43 | 1−172.iT−7.95e4T2 |
| 47 | 1+(92.9+53.6i)T+(5.19e4+8.99e4i)T2 |
| 53 | 1+(−38.8+22.4i)T+(7.44e4−1.28e5i)T2 |
| 59 | 1+(−228.−395.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(236.−410.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−198.+114.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1−407.T+3.57e5T2 |
| 73 | 1+(301.−174.i)T+(1.94e5−3.36e5i)T2 |
| 79 | 1+(−420.+727.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+885.iT−5.71e5T2 |
| 89 | 1+(428.−741.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+189.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.08506232212818506846552784201, −11.25479256776260257272099569153, −10.22699147985012804248171157464, −9.353804597450380970562297371379, −7.19367404491147584129357330361, −6.35378499624710292857260192267, −5.57777706946123597598108465617, −4.47381934898725499859787078388, −3.72049546492953291748846848905, −0.21964600931817025925112850350,
1.82260437262016184238413900765, 3.41082310202111241785301488519, 5.24640452484196390400340848663, 5.58795005167364177740673920216, 6.77112437841602536748483923984, 8.073949786389934926122310282635, 10.02822005102080991770776611143, 10.87735937397874704627128389662, 11.93951237181382044145814718385, 12.42713970745056358240839113296