Properties

Label 2-176-1.1-c5-0-14
Degree $2$
Conductor $176$
Sign $1$
Analytic cond. $28.2275$
Root an. cond. $5.31296$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 29.5·3-s + 41.2·5-s − 77.0·7-s + 632.·9-s + 121·11-s − 637.·13-s + 1.22e3·15-s + 1.42e3·17-s + 1.71e3·19-s − 2.28e3·21-s + 4.19e3·23-s − 1.42e3·25-s + 1.15e4·27-s + 878.·29-s − 6.76e3·31-s + 3.58e3·33-s − 3.17e3·35-s − 4.00e3·37-s − 1.88e4·39-s − 1.36e4·41-s − 1.62e3·43-s + 2.60e4·45-s + 1.71e4·47-s − 1.08e4·49-s + 4.21e4·51-s + 1.51e4·53-s + 4.98e3·55-s + ⋯
L(s)  = 1  + 1.89·3-s + 0.737·5-s − 0.594·7-s + 2.60·9-s + 0.301·11-s − 1.04·13-s + 1.40·15-s + 1.19·17-s + 1.09·19-s − 1.12·21-s + 1.65·23-s − 0.455·25-s + 3.04·27-s + 0.193·29-s − 1.26·31-s + 0.572·33-s − 0.438·35-s − 0.481·37-s − 1.98·39-s − 1.27·41-s − 0.134·43-s + 1.91·45-s + 1.13·47-s − 0.646·49-s + 2.26·51-s + 0.740·53-s + 0.222·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176\)    =    \(2^{4} \cdot 11\)
Sign: $1$
Analytic conductor: \(28.2275\)
Root analytic conductor: \(5.31296\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 176,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.380518885\)
\(L(\frac12)\) \(\approx\) \(4.380518885\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - 121T \)
good3 \( 1 - 29.5T + 243T^{2} \)
5 \( 1 - 41.2T + 3.12e3T^{2} \)
7 \( 1 + 77.0T + 1.68e4T^{2} \)
13 \( 1 + 637.T + 3.71e5T^{2} \)
17 \( 1 - 1.42e3T + 1.41e6T^{2} \)
19 \( 1 - 1.71e3T + 2.47e6T^{2} \)
23 \( 1 - 4.19e3T + 6.43e6T^{2} \)
29 \( 1 - 878.T + 2.05e7T^{2} \)
31 \( 1 + 6.76e3T + 2.86e7T^{2} \)
37 \( 1 + 4.00e3T + 6.93e7T^{2} \)
41 \( 1 + 1.36e4T + 1.15e8T^{2} \)
43 \( 1 + 1.62e3T + 1.47e8T^{2} \)
47 \( 1 - 1.71e4T + 2.29e8T^{2} \)
53 \( 1 - 1.51e4T + 4.18e8T^{2} \)
59 \( 1 + 1.22e4T + 7.14e8T^{2} \)
61 \( 1 + 3.52e4T + 8.44e8T^{2} \)
67 \( 1 - 5.84e4T + 1.35e9T^{2} \)
71 \( 1 - 5.56e3T + 1.80e9T^{2} \)
73 \( 1 + 5.96e4T + 2.07e9T^{2} \)
79 \( 1 + 8.07e4T + 3.07e9T^{2} \)
83 \( 1 - 7.29e4T + 3.93e9T^{2} \)
89 \( 1 - 1.07e5T + 5.58e9T^{2} \)
97 \( 1 - 3.44e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16439923588664503455133900016, −10.27104608776563147031566061527, −9.558287216805528934135622477954, −9.018833966861268827972839676658, −7.70152003114787942435264094707, −6.95871997629458097131436093722, −5.21322987011102319725784400200, −3.56514418249012423677702258015, −2.74042401048019756521052565843, −1.45557761468651860679098532501, 1.45557761468651860679098532501, 2.74042401048019756521052565843, 3.56514418249012423677702258015, 5.21322987011102319725784400200, 6.95871997629458097131436093722, 7.70152003114787942435264094707, 9.018833966861268827972839676658, 9.558287216805528934135622477954, 10.27104608776563147031566061527, 12.16439923588664503455133900016

Graph of the $Z$-function along the critical line