Properties

Label 176.6.a.l
Level $176$
Weight $6$
Character orbit 176.a
Self dual yes
Analytic conductor $28.228$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.2275522871\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 158x^{2} - 78x + 2316 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 3) q^{3} + ( - \beta_{3} + 2 \beta_1 - 5) q^{5} + ( - 4 \beta_{3} + \beta_{2} + \cdots - 13) q^{7} + (5 \beta_{2} + 19 \beta_1 + 43) q^{9} + 121 q^{11} + ( - 8 \beta_{3} - 19 \beta_{2} + \cdots - 315) q^{13}+ \cdots + (605 \beta_{2} + 2299 \beta_1 + 5203) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 13 q^{3} - 19 q^{5} - 58 q^{7} + 191 q^{9} + 484 q^{11} - 1266 q^{13} + 2173 q^{15} - 504 q^{17} + 4016 q^{19} - 2902 q^{21} + 7837 q^{23} - 1845 q^{25} + 16531 q^{27} - 4114 q^{29} + 6989 q^{31}+ \cdots + 23111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 158x^{2} - 78x + 2316 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 52\nu^{2} + 222\nu - 3918 ) / 222 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 10\nu^{3} - 76\nu^{2} - 888\nu + 3549 ) / 111 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -17\nu^{3} - 4\nu^{2} + 2886\nu + 3990 ) / 222 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + 3\beta _1 + 3 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{3} - \beta_{2} + 31\beta _1 + 633 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 33\beta_{3} + 85\beta_{2} + 251\beta _1 + 1119 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.56967
3.65589
−10.4071
13.3209
0 −13.8972 0 −4.29272 0 204.438 0 −49.8668 0
1.2 0 −8.08220 0 −88.6814 0 −238.927 0 −177.678 0
1.3 0 5.39087 0 32.7380 0 53.5703 0 −213.939 0
1.4 0 29.5886 0 41.2361 0 −77.0813 0 632.483 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.a.l 4
4.b odd 2 1 88.6.a.c 4
8.b even 2 1 704.6.a.u 4
8.d odd 2 1 704.6.a.x 4
12.b even 2 1 792.6.a.l 4
44.c even 2 1 968.6.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.a.c 4 4.b odd 2 1
176.6.a.l 4 1.a even 1 1 trivial
704.6.a.u 4 8.b even 2 1
704.6.a.x 4 8.d odd 2 1
792.6.a.l 4 12.b even 2 1
968.6.a.d 4 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 13T_{3}^{3} - 497T_{3}^{2} - 423T_{3} + 17916 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(176))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 13 T^{3} + \cdots + 17916 \) Copy content Toggle raw display
$5$ \( T^{4} + 19 T^{3} + \cdots + 513918 \) Copy content Toggle raw display
$7$ \( T^{4} + 58 T^{3} + \cdots + 201696448 \) Copy content Toggle raw display
$11$ \( (T - 121)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 522545202432 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1669425881616 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 12485832626432 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 2129166090528 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 254878076716032 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 586842385422744 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 38775318298614 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 40933180410496 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 17\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 36\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 37\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 22\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 17\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 40\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 15\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 46\!\cdots\!54 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 54\!\cdots\!98 \) Copy content Toggle raw display
show more
show less