L(s) = 1 | + (0.743 − 0.669i)2-s + (0.809 + 0.587i)3-s + (0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (0.994 − 0.104i)6-s + (0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.413 − 0.459i)11-s + (0.669 − 0.743i)12-s + (−1.20 − 1.08i)13-s + (0.978 − 0.207i)14-s + (0.743 + 0.669i)15-s + (−0.978 − 0.207i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (0.743 − 0.669i)2-s + (0.809 + 0.587i)3-s + (0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (0.994 − 0.104i)6-s + (0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.413 − 0.459i)11-s + (0.669 − 0.743i)12-s + (−1.20 − 1.08i)13-s + (0.978 − 0.207i)14-s + (0.743 + 0.669i)15-s + (−0.978 − 0.207i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.851+0.523i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.851+0.523i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
0.851+0.523i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(1771,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), 0.851+0.523i)
|
Particular Values
L(21) |
≈ |
2.474129754 |
L(21) |
≈ |
2.474129754 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.743+0.669i)T |
| 3 | 1+(−0.809−0.587i)T |
| 5 | 1+(−0.994−0.104i)T |
good | 7 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.413+0.459i)T+(−0.104+0.994i)T2 |
| 13 | 1+(1.20+1.08i)T+(0.104+0.994i)T2 |
| 17 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 23 | 1+(0.207+0.978i)T+(−0.913+0.406i)T2 |
| 29 | 1+(0.251+0.564i)T+(−0.669+0.743i)T2 |
| 31 | 1+(0.406−0.913i)T+(−0.669−0.743i)T2 |
| 37 | 1+(0.809−0.587i)T2 |
| 41 | 1+(1.08−1.20i)T+(−0.104−0.994i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.251−0.564i)T+(−0.669+0.743i)T2 |
| 53 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 59 | 1+(−0.104−0.994i)T2 |
| 61 | 1+(−0.743+0.669i)T+(0.104−0.994i)T2 |
| 67 | 1+(−1.47−0.658i)T+(0.669+0.743i)T2 |
| 71 | 1+(−0.309−0.951i)T2 |
| 73 | 1+(−0.809−0.587i)T2 |
| 79 | 1+(−0.251−0.564i)T+(−0.669+0.743i)T2 |
| 83 | 1+(0.0646+0.614i)T+(−0.978+0.207i)T2 |
| 89 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 97 | 1+(0.669−0.743i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.733808949505023707766585217703, −8.575349034277811693470364086324, −8.227844445742367188647444156194, −6.84781334059969072738753144786, −5.83392625493794589668403428405, −5.09939003724839557032451518265, −4.55770667521927088884364107667, −3.30908475819232154744384149184, −2.42480169018687278073725286970, −1.88987958551792556223339476912,
2.03877755983766968420454142896, 2.34862008093504993769610103878, 3.85387529982627194594816727092, 4.71532494135022391380194252583, 5.38258117509407176660646823546, 6.61379621283506029710969383790, 7.12204618024458327440316944346, 7.65281266591967465917900704997, 8.761160904402304117621828032440, 9.166598279553728271503218639841