L(s) = 1 | + (0.743 − 0.669i)2-s + (0.809 + 0.587i)3-s + (0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (0.994 − 0.104i)6-s + (0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.413 − 0.459i)11-s + (0.669 − 0.743i)12-s + (−1.20 − 1.08i)13-s + (0.978 − 0.207i)14-s + (0.743 + 0.669i)15-s + (−0.978 − 0.207i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (0.743 − 0.669i)2-s + (0.809 + 0.587i)3-s + (0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (0.994 − 0.104i)6-s + (0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.413 − 0.459i)11-s + (0.669 − 0.743i)12-s + (−1.20 − 1.08i)13-s + (0.978 − 0.207i)14-s + (0.743 + 0.669i)15-s + (−0.978 − 0.207i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.851 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.851 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.474129754\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.474129754\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.743 + 0.669i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.994 - 0.104i)T \) |
good | 7 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.413 + 0.459i)T + (-0.104 + 0.994i)T^{2} \) |
| 13 | \( 1 + (1.20 + 1.08i)T + (0.104 + 0.994i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.207 + 0.978i)T + (-0.913 + 0.406i)T^{2} \) |
| 29 | \( 1 + (0.251 + 0.564i)T + (-0.669 + 0.743i)T^{2} \) |
| 31 | \( 1 + (0.406 - 0.913i)T + (-0.669 - 0.743i)T^{2} \) |
| 37 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (1.08 - 1.20i)T + (-0.104 - 0.994i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.251 - 0.564i)T + (-0.669 + 0.743i)T^{2} \) |
| 53 | \( 1 + (-0.951 + 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 61 | \( 1 + (-0.743 + 0.669i)T + (0.104 - 0.994i)T^{2} \) |
| 67 | \( 1 + (-1.47 - 0.658i)T + (0.669 + 0.743i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.251 - 0.564i)T + (-0.669 + 0.743i)T^{2} \) |
| 83 | \( 1 + (0.0646 + 0.614i)T + (-0.978 + 0.207i)T^{2} \) |
| 89 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (0.669 - 0.743i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.733808949505023707766585217703, −8.575349034277811693470364086324, −8.227844445742367188647444156194, −6.84781334059969072738753144786, −5.83392625493794589668403428405, −5.09939003724839557032451518265, −4.55770667521927088884364107667, −3.30908475819232154744384149184, −2.42480169018687278073725286970, −1.88987958551792556223339476912,
2.03877755983766968420454142896, 2.34862008093504993769610103878, 3.85387529982627194594816727092, 4.71532494135022391380194252583, 5.38258117509407176660646823546, 6.61379621283506029710969383790, 7.12204618024458327440316944346, 7.65281266591967465917900704997, 8.761160904402304117621828032440, 9.166598279553728271503218639841