L(s) = 1 | + (−1.08 − 0.909i)2-s + (−1.32 + 0.483i)3-s + (0.173 + 0.984i)4-s + (−0.173 + 0.984i)5-s + (1.87 + 0.684i)6-s + (0.766 − 0.642i)9-s + (1.08 − 0.909i)10-s + (−0.707 − 1.22i)12-s + (1.32 + 0.483i)13-s + (−0.245 − 1.39i)15-s + (0.939 − 0.342i)16-s − 1.41·18-s − 1.00·20-s + (−0.939 − 0.342i)25-s + (−0.999 − 1.73i)26-s + ⋯ |
L(s) = 1 | + (−1.08 − 0.909i)2-s + (−1.32 + 0.483i)3-s + (0.173 + 0.984i)4-s + (−0.173 + 0.984i)5-s + (1.87 + 0.684i)6-s + (0.766 − 0.642i)9-s + (1.08 − 0.909i)10-s + (−0.707 − 1.22i)12-s + (1.32 + 0.483i)13-s + (−0.245 − 1.39i)15-s + (0.939 − 0.342i)16-s − 1.41·18-s − 1.00·20-s + (−0.939 − 0.342i)25-s + (−0.999 − 1.73i)26-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.486−0.873i)Λ(1−s)
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.486−0.873i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
0.486−0.873i
|
Analytic conductor: |
0.900812 |
Root analytic conductor: |
0.949111 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1029,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :0), 0.486−0.873i)
|
Particular Values
L(21) |
≈ |
0.3357149794 |
L(21) |
≈ |
0.3357149794 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.173−0.984i)T |
| 19 | 1 |
good | 2 | 1+(1.08+0.909i)T+(0.173+0.984i)T2 |
| 3 | 1+(1.32−0.483i)T+(0.766−0.642i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(−1.32−0.483i)T+(0.766+0.642i)T2 |
| 17 | 1+(−0.173−0.984i)T2 |
| 23 | 1+(0.939−0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−1.41T+T2 |
| 41 | 1+(−0.766+0.642i)T2 |
| 43 | 1+(0.939+0.342i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(−0.245−1.39i)T+(−0.939+0.342i)T2 |
| 59 | 1+(−0.173−0.984i)T2 |
| 61 | 1+(−0.939+0.342i)T2 |
| 67 | 1+(1.08−0.909i)T+(0.173−0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(−0.766+0.642i)T2 |
| 79 | 1+(−0.766+0.642i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(−0.766−0.642i)T2 |
| 97 | 1+(−1.08−0.909i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.834456604049416608099916883478, −9.115742684208134934491106542606, −8.207416724356486193959675098830, −7.31530723543424235123443459576, −6.21225525464538832219178082596, −5.86880241614770173262660785248, −4.55244719803694623852970634402, −3.59357063301225749018263706735, −2.52610247492520836734286134394, −1.16145643419303792214584905934,
0.54542252911770121957812014451, 1.45888709436266364234402245954, 3.59982608745578708669701935652, 4.80347374695281852946417682883, 5.72703555347456897508434160732, 6.14631190221241046026892179166, 6.95153683815487225207121391669, 7.83839239677226577554220997837, 8.402340590831202336568180776200, 9.117253184464622146965083949953