L(s) = 1 | + (−0.5 + 0.866i)2-s − 2.39·3-s + (−0.499 − 0.866i)4-s + (−0.561 − 0.972i)5-s + (1.19 − 2.07i)6-s + (2.64 − 0.173i)7-s + 0.999·8-s + 2.75·9-s + 1.12·10-s + 5.57·11-s + (1.19 + 2.07i)12-s + (−0.197 + 3.60i)13-s + (−1.16 + 2.37i)14-s + (1.34 + 2.33i)15-s + (−0.5 + 0.866i)16-s + (−3.66 − 6.35i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s − 1.38·3-s + (−0.249 − 0.433i)4-s + (−0.251 − 0.434i)5-s + (0.489 − 0.848i)6-s + (0.997 − 0.0656i)7-s + 0.353·8-s + 0.919·9-s + 0.355·10-s + 1.68·11-s + (0.346 + 0.599i)12-s + (−0.0548 + 0.998i)13-s + (−0.312 + 0.634i)14-s + (0.347 + 0.602i)15-s + (−0.125 + 0.216i)16-s + (−0.889 − 1.54i)17-s + ⋯ |
Λ(s)=(=(182s/2ΓC(s)L(s)(0.976−0.213i)Λ(2−s)
Λ(s)=(=(182s/2ΓC(s+1/2)L(s)(0.976−0.213i)Λ(1−s)
Degree: |
2 |
Conductor: |
182
= 2⋅7⋅13
|
Sign: |
0.976−0.213i
|
Analytic conductor: |
1.45327 |
Root analytic conductor: |
1.20551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ182(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 182, ( :1/2), 0.976−0.213i)
|
Particular Values
L(1) |
≈ |
0.692387+0.0749269i |
L(21) |
≈ |
0.692387+0.0749269i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 7 | 1+(−2.64+0.173i)T |
| 13 | 1+(0.197−3.60i)T |
good | 3 | 1+2.39T+3T2 |
| 5 | 1+(0.561+0.972i)T+(−2.5+4.33i)T2 |
| 11 | 1−5.57T+11T2 |
| 17 | 1+(3.66+6.35i)T+(−8.5+14.7i)T2 |
| 19 | 1−6.63T+19T2 |
| 23 | 1+(−1.69+2.94i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.929−1.60i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.60−4.51i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1.89+3.28i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.55+2.69i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.97−6.89i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.44+2.51i)T+(−23.5+40.7i)T2 |
| 53 | 1+(5.29−9.16i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2.35+4.07i)T+(−29.5+51.0i)T2 |
| 61 | 1−4.95T+61T2 |
| 67 | 1−0.510T+67T2 |
| 71 | 1+(−3.07+5.32i)T+(−35.5−61.4i)T2 |
| 73 | 1+(3.68−6.38i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.36−4.09i)T+(−39.5+68.4i)T2 |
| 83 | 1−1.80T+83T2 |
| 89 | 1+(4.18−7.24i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−2.08+3.60i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.22688977885848807429170420602, −11.60525968324251502444478339227, −11.02873168776849178144219108776, −9.491860144173119783100285505640, −8.726001532562200799147561993942, −7.18780278202946094143957530049, −6.51701781810564834467559484251, −5.11788121434211840351206013760, −4.48020009047940889844802867918, −1.11258520739586448069622318586,
1.34542170971051231906626574394, 3.68479750323322531421322466146, 5.03802446597916962190101032192, 6.22138867202972524136349153542, 7.42008780356272839301551815768, 8.657888022630951471925542120845, 9.938677299976271073313177470231, 11.04632468529545967877909747830, 11.41045830884318948603543877770, 12.11786121537305731867597581950