L(s) = 1 | − 2-s + (−2 + 2i)3-s − 4-s + (−1 + 2i)5-s + (2 − 2i)6-s + 3·8-s − 5i·9-s + (1 − 2i)10-s − 4i·11-s + (2 − 2i)12-s − 4·13-s + (−2 − 6i)15-s − 16-s + 2i·17-s + 5i·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−1.15 + 1.15i)3-s − 0.5·4-s + (−0.447 + 0.894i)5-s + (0.816 − 0.816i)6-s + 1.06·8-s − 1.66i·9-s + (0.316 − 0.632i)10-s − 1.20i·11-s + (0.577 − 0.577i)12-s − 1.10·13-s + (−0.516 − 1.54i)15-s − 0.250·16-s + 0.485i·17-s + 1.17i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.309 + 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.309 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1 - 2i)T \) |
| 37 | \( 1 + (1 - 6i)T \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (2 - 2i)T - 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 19iT^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + (1 - i)T - 29iT^{2} \) |
| 31 | \( 1 + (6 + 6i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 + (-8 + 8i)T - 47iT^{2} \) |
| 53 | \( 1 + (9 + 9i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4 - 4i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + (6 + 6i)T + 67iT^{2} \) |
| 71 | \( 1 + 4T + 71T^{2} \) |
| 73 | \( 1 + (11 - 11i)T - 73iT^{2} \) |
| 79 | \( 1 + (6 + 6i)T + 79iT^{2} \) |
| 83 | \( 1 + (2 + 2i)T + 83iT^{2} \) |
| 89 | \( 1 + (1 - i)T - 89iT^{2} \) |
| 97 | \( 1 + 4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.79925645971910819215343496929, −11.05233437961054836011496367652, −10.36069300317884076015181233277, −9.620012553799449594182753328326, −8.459038134695047937455211668892, −7.16788345206229107744699076591, −5.80487837787603637191963573195, −4.69954442347950675612313087224, −3.51600518630916943386036690955, 0,
1.56723760771432894279445474181, 4.62713613916430467161249897649, 5.33469939284089197070161284126, 7.14977691777917398809994079094, 7.53375307058247587357249366422, 8.867023978556716664989436402135, 9.842374305639781560858925177247, 11.04441630478008108341163433690, 12.16863657551990597683003049864