L(s) = 1 | − 19.3·5-s − 4.84·7-s − 61.0·11-s + 13·13-s + 41.7·17-s + 107.·19-s + 28.5·23-s + 249.·25-s + 89.8·29-s − 183.·31-s + 93.6·35-s + 418.·37-s + 142.·41-s + 71.0·43-s + 323.·47-s − 319.·49-s + 25.1·53-s + 1.18e3·55-s − 684.·59-s + 308.·61-s − 251.·65-s − 672.·67-s − 326.·71-s + 24.3·73-s + 295.·77-s − 166.·79-s − 201.·83-s + ⋯ |
L(s) = 1 | − 1.72·5-s − 0.261·7-s − 1.67·11-s + 0.277·13-s + 0.596·17-s + 1.29·19-s + 0.258·23-s + 1.99·25-s + 0.575·29-s − 1.06·31-s + 0.452·35-s + 1.85·37-s + 0.543·41-s + 0.252·43-s + 1.00·47-s − 0.931·49-s + 0.0650·53-s + 2.89·55-s − 1.51·59-s + 0.646·61-s − 0.479·65-s − 1.22·67-s − 0.546·71-s + 0.0389·73-s + 0.437·77-s − 0.237·79-s − 0.265·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−13T |
good | 5 | 1+19.3T+125T2 |
| 7 | 1+4.84T+343T2 |
| 11 | 1+61.0T+1.33e3T2 |
| 17 | 1−41.7T+4.91e3T2 |
| 19 | 1−107.T+6.85e3T2 |
| 23 | 1−28.5T+1.21e4T2 |
| 29 | 1−89.8T+2.43e4T2 |
| 31 | 1+183.T+2.97e4T2 |
| 37 | 1−418.T+5.06e4T2 |
| 41 | 1−142.T+6.89e4T2 |
| 43 | 1−71.0T+7.95e4T2 |
| 47 | 1−323.T+1.03e5T2 |
| 53 | 1−25.1T+1.48e5T2 |
| 59 | 1+684.T+2.05e5T2 |
| 61 | 1−308.T+2.26e5T2 |
| 67 | 1+672.T+3.00e5T2 |
| 71 | 1+326.T+3.57e5T2 |
| 73 | 1−24.3T+3.89e5T2 |
| 79 | 1+166.T+4.93e5T2 |
| 83 | 1+201.T+5.71e5T2 |
| 89 | 1+108.T+7.04e5T2 |
| 97 | 1−1.15e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.245736428002200750136047556038, −7.57547644245008626663418372191, −7.38208841751880378861147131901, −6.01279702449559026804490910220, −5.12714336593394908950690043799, −4.32047385002478398692844630940, −3.33745089719184438097433035452, −2.75545666297865441718368239673, −0.958062341644736310805027065430, 0,
0.958062341644736310805027065430, 2.75545666297865441718368239673, 3.33745089719184438097433035452, 4.32047385002478398692844630940, 5.12714336593394908950690043799, 6.01279702449559026804490910220, 7.38208841751880378861147131901, 7.57547644245008626663418372191, 8.245736428002200750136047556038