Properties

Label 1872.4.a.bk.1.1
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.526440\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.3400 q^{5} -4.84136 q^{7} -61.0728 q^{11} +13.0000 q^{13} +41.7885 q^{17} +107.561 q^{19} +28.5138 q^{23} +249.034 q^{25} +89.8886 q^{29} -183.108 q^{31} +93.6318 q^{35} +418.029 q^{37} +142.674 q^{41} +71.0935 q^{43} +323.711 q^{47} -319.561 q^{49} +25.1047 q^{53} +1181.15 q^{55} -684.508 q^{59} +308.125 q^{61} -251.420 q^{65} -672.808 q^{67} -326.837 q^{71} +24.3058 q^{73} +295.675 q^{77} -166.810 q^{79} -201.093 q^{83} -808.188 q^{85} -108.834 q^{89} -62.9377 q^{91} -2080.23 q^{95} +1157.95 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{5} - 30 q^{7} - 16 q^{11} + 39 q^{13} + 146 q^{17} - 94 q^{19} - 48 q^{23} + 145 q^{25} + 2 q^{29} - 302 q^{31} + 80 q^{35} + 374 q^{37} - 480 q^{41} + 260 q^{43} - 24 q^{47} + 447 q^{49} + 678 q^{53}+ \cdots + 3242 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −19.3400 −1.72982 −0.864909 0.501928i \(-0.832624\pi\)
−0.864909 + 0.501928i \(0.832624\pi\)
\(6\) 0 0
\(7\) −4.84136 −0.261409 −0.130704 0.991421i \(-0.541724\pi\)
−0.130704 + 0.991421i \(0.541724\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −61.0728 −1.67401 −0.837006 0.547194i \(-0.815696\pi\)
−0.837006 + 0.547194i \(0.815696\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 41.7885 0.596188 0.298094 0.954537i \(-0.403649\pi\)
0.298094 + 0.954537i \(0.403649\pi\)
\(18\) 0 0
\(19\) 107.561 1.29875 0.649374 0.760469i \(-0.275031\pi\)
0.649374 + 0.760469i \(0.275031\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 28.5138 0.258502 0.129251 0.991612i \(-0.458743\pi\)
0.129251 + 0.991612i \(0.458743\pi\)
\(24\) 0 0
\(25\) 249.034 1.99227
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 89.8886 0.575583 0.287791 0.957693i \(-0.407079\pi\)
0.287791 + 0.957693i \(0.407079\pi\)
\(30\) 0 0
\(31\) −183.108 −1.06087 −0.530437 0.847724i \(-0.677972\pi\)
−0.530437 + 0.847724i \(0.677972\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 93.6318 0.452190
\(36\) 0 0
\(37\) 418.029 1.85739 0.928696 0.370843i \(-0.120931\pi\)
0.928696 + 0.370843i \(0.120931\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 142.674 0.543460 0.271730 0.962373i \(-0.412404\pi\)
0.271730 + 0.962373i \(0.412404\pi\)
\(42\) 0 0
\(43\) 71.0935 0.252132 0.126066 0.992022i \(-0.459765\pi\)
0.126066 + 0.992022i \(0.459765\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 323.711 1.00464 0.502321 0.864681i \(-0.332480\pi\)
0.502321 + 0.864681i \(0.332480\pi\)
\(48\) 0 0
\(49\) −319.561 −0.931665
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 25.1047 0.0650641 0.0325321 0.999471i \(-0.489643\pi\)
0.0325321 + 0.999471i \(0.489643\pi\)
\(54\) 0 0
\(55\) 1181.15 2.89574
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −684.508 −1.51043 −0.755215 0.655477i \(-0.772467\pi\)
−0.755215 + 0.655477i \(0.772467\pi\)
\(60\) 0 0
\(61\) 308.125 0.646744 0.323372 0.946272i \(-0.395184\pi\)
0.323372 + 0.946272i \(0.395184\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −251.420 −0.479765
\(66\) 0 0
\(67\) −672.808 −1.22681 −0.613407 0.789767i \(-0.710202\pi\)
−0.613407 + 0.789767i \(0.710202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −326.837 −0.546315 −0.273158 0.961969i \(-0.588068\pi\)
−0.273158 + 0.961969i \(0.588068\pi\)
\(72\) 0 0
\(73\) 24.3058 0.0389695 0.0194847 0.999810i \(-0.493797\pi\)
0.0194847 + 0.999810i \(0.493797\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 295.675 0.437602
\(78\) 0 0
\(79\) −166.810 −0.237565 −0.118783 0.992920i \(-0.537899\pi\)
−0.118783 + 0.992920i \(0.537899\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −201.093 −0.265938 −0.132969 0.991120i \(-0.542451\pi\)
−0.132969 + 0.991120i \(0.542451\pi\)
\(84\) 0 0
\(85\) −808.188 −1.03130
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −108.834 −0.129622 −0.0648109 0.997898i \(-0.520644\pi\)
−0.0648109 + 0.997898i \(0.520644\pi\)
\(90\) 0 0
\(91\) −62.9377 −0.0725018
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2080.23 −2.24660
\(96\) 0 0
\(97\) 1157.95 1.21208 0.606041 0.795434i \(-0.292757\pi\)
0.606041 + 0.795434i \(0.292757\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1702.75 −1.67752 −0.838761 0.544500i \(-0.816719\pi\)
−0.838761 + 0.544500i \(0.816719\pi\)
\(102\) 0 0
\(103\) 1455.14 1.39203 0.696015 0.718027i \(-0.254955\pi\)
0.696015 + 0.718027i \(0.254955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −822.762 −0.743359 −0.371679 0.928361i \(-0.621218\pi\)
−0.371679 + 0.928361i \(0.621218\pi\)
\(108\) 0 0
\(109\) 457.264 0.401816 0.200908 0.979610i \(-0.435611\pi\)
0.200908 + 0.979610i \(0.435611\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 381.693 0.317758 0.158879 0.987298i \(-0.449212\pi\)
0.158879 + 0.987298i \(0.449212\pi\)
\(114\) 0 0
\(115\) −551.456 −0.447161
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −202.313 −0.155849
\(120\) 0 0
\(121\) 2398.88 1.80232
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2398.82 −1.71645
\(126\) 0 0
\(127\) 1129.09 0.788905 0.394452 0.918916i \(-0.370934\pi\)
0.394452 + 0.918916i \(0.370934\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −852.761 −0.568749 −0.284374 0.958713i \(-0.591786\pi\)
−0.284374 + 0.958713i \(0.591786\pi\)
\(132\) 0 0
\(133\) −520.742 −0.339504
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 488.903 0.304889 0.152445 0.988312i \(-0.451285\pi\)
0.152445 + 0.988312i \(0.451285\pi\)
\(138\) 0 0
\(139\) −407.123 −0.248430 −0.124215 0.992255i \(-0.539641\pi\)
−0.124215 + 0.992255i \(0.539641\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −793.946 −0.464287
\(144\) 0 0
\(145\) −1738.44 −0.995654
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1717.63 −0.944388 −0.472194 0.881495i \(-0.656538\pi\)
−0.472194 + 0.881495i \(0.656538\pi\)
\(150\) 0 0
\(151\) −1341.79 −0.723133 −0.361567 0.932346i \(-0.617758\pi\)
−0.361567 + 0.932346i \(0.617758\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3541.30 1.83512
\(156\) 0 0
\(157\) −760.546 −0.386612 −0.193306 0.981138i \(-0.561921\pi\)
−0.193306 + 0.981138i \(0.561921\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −138.046 −0.0675746
\(162\) 0 0
\(163\) −2712.09 −1.30323 −0.651616 0.758549i \(-0.725909\pi\)
−0.651616 + 0.758549i \(0.725909\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1551.69 0.719004 0.359502 0.933144i \(-0.382947\pi\)
0.359502 + 0.933144i \(0.382947\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3970.26 1.74482 0.872409 0.488777i \(-0.162557\pi\)
0.872409 + 0.488777i \(0.162557\pi\)
\(174\) 0 0
\(175\) −1205.66 −0.520798
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2690.95 −1.12364 −0.561818 0.827261i \(-0.689898\pi\)
−0.561818 + 0.827261i \(0.689898\pi\)
\(180\) 0 0
\(181\) −4371.10 −1.79503 −0.897517 0.440980i \(-0.854631\pi\)
−0.897517 + 0.440980i \(0.854631\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8084.66 −3.21295
\(186\) 0 0
\(187\) −2552.14 −0.998026
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1408.47 0.533578 0.266789 0.963755i \(-0.414037\pi\)
0.266789 + 0.963755i \(0.414037\pi\)
\(192\) 0 0
\(193\) −4131.69 −1.54096 −0.770481 0.637463i \(-0.779984\pi\)
−0.770481 + 0.637463i \(0.779984\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3401.23 1.23009 0.615045 0.788492i \(-0.289138\pi\)
0.615045 + 0.788492i \(0.289138\pi\)
\(198\) 0 0
\(199\) 3520.74 1.25416 0.627081 0.778954i \(-0.284249\pi\)
0.627081 + 0.778954i \(0.284249\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −435.183 −0.150463
\(204\) 0 0
\(205\) −2759.30 −0.940088
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6569.05 −2.17412
\(210\) 0 0
\(211\) 2245.22 0.732545 0.366272 0.930508i \(-0.380634\pi\)
0.366272 + 0.930508i \(0.380634\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1374.95 −0.436142
\(216\) 0 0
\(217\) 886.490 0.277322
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 543.250 0.165353
\(222\) 0 0
\(223\) −3431.26 −1.03038 −0.515188 0.857077i \(-0.672278\pi\)
−0.515188 + 0.857077i \(0.672278\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4757.91 −1.39116 −0.695581 0.718448i \(-0.744853\pi\)
−0.695581 + 0.718448i \(0.744853\pi\)
\(228\) 0 0
\(229\) −4368.93 −1.26073 −0.630364 0.776300i \(-0.717094\pi\)
−0.630364 + 0.776300i \(0.717094\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3642.00 1.02401 0.512007 0.858981i \(-0.328902\pi\)
0.512007 + 0.858981i \(0.328902\pi\)
\(234\) 0 0
\(235\) −6260.57 −1.73785
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2236.17 0.605213 0.302606 0.953116i \(-0.402143\pi\)
0.302606 + 0.953116i \(0.402143\pi\)
\(240\) 0 0
\(241\) 6538.78 1.74772 0.873858 0.486181i \(-0.161610\pi\)
0.873858 + 0.486181i \(0.161610\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6180.30 1.61161
\(246\) 0 0
\(247\) 1398.29 0.360208
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2507.12 0.630470 0.315235 0.949014i \(-0.397917\pi\)
0.315235 + 0.949014i \(0.397917\pi\)
\(252\) 0 0
\(253\) −1741.42 −0.432735
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 808.131 0.196147 0.0980735 0.995179i \(-0.468732\pi\)
0.0980735 + 0.995179i \(0.468732\pi\)
\(258\) 0 0
\(259\) −2023.83 −0.485539
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2940.70 0.689472 0.344736 0.938700i \(-0.387968\pi\)
0.344736 + 0.938700i \(0.387968\pi\)
\(264\) 0 0
\(265\) −485.525 −0.112549
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7111.50 −1.61188 −0.805940 0.591997i \(-0.798340\pi\)
−0.805940 + 0.591997i \(0.798340\pi\)
\(270\) 0 0
\(271\) −2034.96 −0.456145 −0.228072 0.973644i \(-0.573242\pi\)
−0.228072 + 0.973644i \(0.573242\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15209.2 −3.33509
\(276\) 0 0
\(277\) 2723.20 0.590689 0.295345 0.955391i \(-0.404566\pi\)
0.295345 + 0.955391i \(0.404566\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3265.56 −0.693263 −0.346632 0.938001i \(-0.612675\pi\)
−0.346632 + 0.938001i \(0.612675\pi\)
\(282\) 0 0
\(283\) −1144.02 −0.240299 −0.120150 0.992756i \(-0.538337\pi\)
−0.120150 + 0.992756i \(0.538337\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −690.735 −0.142065
\(288\) 0 0
\(289\) −3166.72 −0.644560
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1677.35 0.334444 0.167222 0.985919i \(-0.446520\pi\)
0.167222 + 0.985919i \(0.446520\pi\)
\(294\) 0 0
\(295\) 13238.4 2.61277
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 370.679 0.0716954
\(300\) 0 0
\(301\) −344.190 −0.0659095
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5959.13 −1.11875
\(306\) 0 0
\(307\) −7207.70 −1.33995 −0.669975 0.742383i \(-0.733695\pi\)
−0.669975 + 0.742383i \(0.733695\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 412.963 0.0752958 0.0376479 0.999291i \(-0.488013\pi\)
0.0376479 + 0.999291i \(0.488013\pi\)
\(312\) 0 0
\(313\) 2936.39 0.530270 0.265135 0.964211i \(-0.414583\pi\)
0.265135 + 0.964211i \(0.414583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −377.956 −0.0669657 −0.0334828 0.999439i \(-0.510660\pi\)
−0.0334828 + 0.999439i \(0.510660\pi\)
\(318\) 0 0
\(319\) −5489.75 −0.963533
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4494.81 0.774298
\(324\) 0 0
\(325\) 3237.44 0.552557
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1567.20 −0.262622
\(330\) 0 0
\(331\) 4428.17 0.735330 0.367665 0.929958i \(-0.380157\pi\)
0.367665 + 0.929958i \(0.380157\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13012.1 2.12217
\(336\) 0 0
\(337\) −1768.76 −0.285907 −0.142953 0.989729i \(-0.545660\pi\)
−0.142953 + 0.989729i \(0.545660\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11182.9 1.77592
\(342\) 0 0
\(343\) 3207.70 0.504955
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2412.97 0.373300 0.186650 0.982426i \(-0.440237\pi\)
0.186650 + 0.982426i \(0.440237\pi\)
\(348\) 0 0
\(349\) −9967.45 −1.52878 −0.764392 0.644752i \(-0.776961\pi\)
−0.764392 + 0.644752i \(0.776961\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4516.30 −0.680959 −0.340479 0.940252i \(-0.610589\pi\)
−0.340479 + 0.940252i \(0.610589\pi\)
\(354\) 0 0
\(355\) 6321.01 0.945027
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12159.8 1.78767 0.893833 0.448400i \(-0.148006\pi\)
0.893833 + 0.448400i \(0.148006\pi\)
\(360\) 0 0
\(361\) 4710.38 0.686745
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −470.072 −0.0674102
\(366\) 0 0
\(367\) 2674.25 0.380367 0.190183 0.981749i \(-0.439092\pi\)
0.190183 + 0.981749i \(0.439092\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −121.541 −0.0170083
\(372\) 0 0
\(373\) 9601.74 1.33287 0.666433 0.745564i \(-0.267820\pi\)
0.666433 + 0.745564i \(0.267820\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1168.55 0.159638
\(378\) 0 0
\(379\) −9019.65 −1.22245 −0.611225 0.791457i \(-0.709323\pi\)
−0.611225 + 0.791457i \(0.709323\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4015.34 −0.535703 −0.267852 0.963460i \(-0.586314\pi\)
−0.267852 + 0.963460i \(0.586314\pi\)
\(384\) 0 0
\(385\) −5718.35 −0.756972
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2725.35 0.355221 0.177610 0.984101i \(-0.443163\pi\)
0.177610 + 0.984101i \(0.443163\pi\)
\(390\) 0 0
\(391\) 1191.55 0.154115
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3226.11 0.410945
\(396\) 0 0
\(397\) −4391.59 −0.555182 −0.277591 0.960699i \(-0.589536\pi\)
−0.277591 + 0.960699i \(0.589536\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3762.48 −0.468552 −0.234276 0.972170i \(-0.575272\pi\)
−0.234276 + 0.972170i \(0.575272\pi\)
\(402\) 0 0
\(403\) −2380.40 −0.294234
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −25530.2 −3.10930
\(408\) 0 0
\(409\) −6797.81 −0.821833 −0.410917 0.911673i \(-0.634791\pi\)
−0.410917 + 0.911673i \(0.634791\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3313.95 0.394840
\(414\) 0 0
\(415\) 3889.14 0.460025
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12594.2 −1.46841 −0.734207 0.678925i \(-0.762446\pi\)
−0.734207 + 0.678925i \(0.762446\pi\)
\(420\) 0 0
\(421\) 6888.04 0.797393 0.398697 0.917083i \(-0.369463\pi\)
0.398697 + 0.917083i \(0.369463\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10406.8 1.18777
\(426\) 0 0
\(427\) −1491.74 −0.169065
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7384.53 −0.825291 −0.412645 0.910892i \(-0.635395\pi\)
−0.412645 + 0.910892i \(0.635395\pi\)
\(432\) 0 0
\(433\) 9068.33 1.00646 0.503229 0.864153i \(-0.332145\pi\)
0.503229 + 0.864153i \(0.332145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3066.97 0.335728
\(438\) 0 0
\(439\) −16875.4 −1.83466 −0.917331 0.398125i \(-0.869661\pi\)
−0.917331 + 0.398125i \(0.869661\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6766.18 −0.725668 −0.362834 0.931854i \(-0.618191\pi\)
−0.362834 + 0.931854i \(0.618191\pi\)
\(444\) 0 0
\(445\) 2104.84 0.224222
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −140.944 −0.0148141 −0.00740706 0.999973i \(-0.502358\pi\)
−0.00740706 + 0.999973i \(0.502358\pi\)
\(450\) 0 0
\(451\) −8713.47 −0.909759
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1217.21 0.125415
\(456\) 0 0
\(457\) −17733.1 −1.81514 −0.907571 0.419898i \(-0.862066\pi\)
−0.907571 + 0.419898i \(0.862066\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2293.37 −0.231699 −0.115849 0.993267i \(-0.536959\pi\)
−0.115849 + 0.993267i \(0.536959\pi\)
\(462\) 0 0
\(463\) −13770.9 −1.38226 −0.691129 0.722731i \(-0.742887\pi\)
−0.691129 + 0.722731i \(0.742887\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3477.37 −0.344568 −0.172284 0.985047i \(-0.555115\pi\)
−0.172284 + 0.985047i \(0.555115\pi\)
\(468\) 0 0
\(469\) 3257.31 0.320700
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4341.88 −0.422072
\(474\) 0 0
\(475\) 26786.4 2.58746
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3137.39 −0.299271 −0.149636 0.988741i \(-0.547810\pi\)
−0.149636 + 0.988741i \(0.547810\pi\)
\(480\) 0 0
\(481\) 5434.37 0.515148
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22394.7 −2.09668
\(486\) 0 0
\(487\) −5996.52 −0.557964 −0.278982 0.960296i \(-0.589997\pi\)
−0.278982 + 0.960296i \(0.589997\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9401.49 −0.864121 −0.432060 0.901845i \(-0.642213\pi\)
−0.432060 + 0.901845i \(0.642213\pi\)
\(492\) 0 0
\(493\) 3756.31 0.343156
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1582.34 0.142812
\(498\) 0 0
\(499\) 5052.33 0.453253 0.226626 0.973982i \(-0.427230\pi\)
0.226626 + 0.973982i \(0.427230\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8184.02 0.725462 0.362731 0.931894i \(-0.381844\pi\)
0.362731 + 0.931894i \(0.381844\pi\)
\(504\) 0 0
\(505\) 32931.1 2.90181
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6039.12 −0.525892 −0.262946 0.964811i \(-0.584694\pi\)
−0.262946 + 0.964811i \(0.584694\pi\)
\(510\) 0 0
\(511\) −117.673 −0.0101870
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28142.3 −2.40796
\(516\) 0 0
\(517\) −19770.0 −1.68178
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14602.5 1.22792 0.613960 0.789337i \(-0.289576\pi\)
0.613960 + 0.789337i \(0.289576\pi\)
\(522\) 0 0
\(523\) −8910.70 −0.745005 −0.372502 0.928031i \(-0.621500\pi\)
−0.372502 + 0.928031i \(0.621500\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7651.79 −0.632481
\(528\) 0 0
\(529\) −11354.0 −0.933177
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1854.76 0.150729
\(534\) 0 0
\(535\) 15912.2 1.28588
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 19516.5 1.55962
\(540\) 0 0
\(541\) −13313.6 −1.05803 −0.529017 0.848611i \(-0.677439\pi\)
−0.529017 + 0.848611i \(0.677439\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8843.47 −0.695069
\(546\) 0 0
\(547\) 4116.94 0.321806 0.160903 0.986970i \(-0.448559\pi\)
0.160903 + 0.986970i \(0.448559\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9668.52 0.747537
\(552\) 0 0
\(553\) 807.590 0.0621016
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6888.37 0.524003 0.262002 0.965067i \(-0.415617\pi\)
0.262002 + 0.965067i \(0.415617\pi\)
\(558\) 0 0
\(559\) 924.216 0.0699288
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10537.1 0.788782 0.394391 0.918943i \(-0.370955\pi\)
0.394391 + 0.918943i \(0.370955\pi\)
\(564\) 0 0
\(565\) −7381.92 −0.549664
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26930.1 −1.98413 −0.992065 0.125722i \(-0.959875\pi\)
−0.992065 + 0.125722i \(0.959875\pi\)
\(570\) 0 0
\(571\) 3125.60 0.229076 0.114538 0.993419i \(-0.463461\pi\)
0.114538 + 0.993419i \(0.463461\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7100.91 0.515006
\(576\) 0 0
\(577\) 4787.13 0.345391 0.172696 0.984975i \(-0.444752\pi\)
0.172696 + 0.984975i \(0.444752\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 973.566 0.0695186
\(582\) 0 0
\(583\) −1533.22 −0.108918
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18380.8 1.29243 0.646214 0.763156i \(-0.276351\pi\)
0.646214 + 0.763156i \(0.276351\pi\)
\(588\) 0 0
\(589\) −19695.3 −1.37781
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13831.7 0.957843 0.478922 0.877858i \(-0.341028\pi\)
0.478922 + 0.877858i \(0.341028\pi\)
\(594\) 0 0
\(595\) 3912.73 0.269590
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12248.6 0.835502 0.417751 0.908562i \(-0.362818\pi\)
0.417751 + 0.908562i \(0.362818\pi\)
\(600\) 0 0
\(601\) 9719.56 0.659682 0.329841 0.944036i \(-0.393005\pi\)
0.329841 + 0.944036i \(0.393005\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −46394.3 −3.11768
\(606\) 0 0
\(607\) −1607.83 −0.107512 −0.0537560 0.998554i \(-0.517119\pi\)
−0.0537560 + 0.998554i \(0.517119\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4208.25 0.278638
\(612\) 0 0
\(613\) 14731.1 0.970610 0.485305 0.874345i \(-0.338709\pi\)
0.485305 + 0.874345i \(0.338709\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27951.8 −1.82382 −0.911909 0.410392i \(-0.865392\pi\)
−0.911909 + 0.410392i \(0.865392\pi\)
\(618\) 0 0
\(619\) −16200.2 −1.05192 −0.525961 0.850509i \(-0.676294\pi\)
−0.525961 + 0.850509i \(0.676294\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 526.903 0.0338843
\(624\) 0 0
\(625\) 15263.8 0.976880
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17468.8 1.10735
\(630\) 0 0
\(631\) −12731.8 −0.803239 −0.401619 0.915807i \(-0.631553\pi\)
−0.401619 + 0.915807i \(0.631553\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21836.6 −1.36466
\(636\) 0 0
\(637\) −4154.30 −0.258397
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11556.9 0.712119 0.356059 0.934463i \(-0.384120\pi\)
0.356059 + 0.934463i \(0.384120\pi\)
\(642\) 0 0
\(643\) 9181.25 0.563100 0.281550 0.959547i \(-0.409152\pi\)
0.281550 + 0.959547i \(0.409152\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5244.11 0.318651 0.159326 0.987226i \(-0.449068\pi\)
0.159326 + 0.987226i \(0.449068\pi\)
\(648\) 0 0
\(649\) 41804.8 2.52848
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16421.4 0.984106 0.492053 0.870565i \(-0.336247\pi\)
0.492053 + 0.870565i \(0.336247\pi\)
\(654\) 0 0
\(655\) 16492.4 0.983832
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1838.11 0.108653 0.0543266 0.998523i \(-0.482699\pi\)
0.0543266 + 0.998523i \(0.482699\pi\)
\(660\) 0 0
\(661\) −5500.93 −0.323694 −0.161847 0.986816i \(-0.551745\pi\)
−0.161847 + 0.986816i \(0.551745\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10071.1 0.587281
\(666\) 0 0
\(667\) 2563.07 0.148789
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18818.0 −1.08266
\(672\) 0 0
\(673\) −25986.7 −1.48843 −0.744216 0.667939i \(-0.767177\pi\)
−0.744216 + 0.667939i \(0.767177\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11691.3 0.663714 0.331857 0.943330i \(-0.392325\pi\)
0.331857 + 0.943330i \(0.392325\pi\)
\(678\) 0 0
\(679\) −5606.05 −0.316849
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11111.5 −0.622501 −0.311251 0.950328i \(-0.600748\pi\)
−0.311251 + 0.950328i \(0.600748\pi\)
\(684\) 0 0
\(685\) −9455.37 −0.527403
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 326.361 0.0180455
\(690\) 0 0
\(691\) 7542.55 0.415242 0.207621 0.978209i \(-0.433428\pi\)
0.207621 + 0.978209i \(0.433428\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7873.75 0.429738
\(696\) 0 0
\(697\) 5962.11 0.324005
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8231.17 0.443491 0.221745 0.975105i \(-0.428825\pi\)
0.221745 + 0.975105i \(0.428825\pi\)
\(702\) 0 0
\(703\) 44963.6 2.41228
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8243.61 0.438519
\(708\) 0 0
\(709\) 28044.6 1.48553 0.742764 0.669554i \(-0.233515\pi\)
0.742764 + 0.669554i \(0.233515\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5221.09 −0.274238
\(714\) 0 0
\(715\) 15354.9 0.803133
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 29686.4 1.53980 0.769901 0.638163i \(-0.220306\pi\)
0.769901 + 0.638163i \(0.220306\pi\)
\(720\) 0 0
\(721\) −7044.86 −0.363889
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22385.3 1.14672
\(726\) 0 0
\(727\) 27654.5 1.41080 0.705398 0.708812i \(-0.250768\pi\)
0.705398 + 0.708812i \(0.250768\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2970.89 0.150318
\(732\) 0 0
\(733\) −13077.5 −0.658975 −0.329488 0.944160i \(-0.606876\pi\)
−0.329488 + 0.944160i \(0.606876\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 41090.3 2.05370
\(738\) 0 0
\(739\) 4218.33 0.209978 0.104989 0.994473i \(-0.466519\pi\)
0.104989 + 0.994473i \(0.466519\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7725.54 0.381457 0.190728 0.981643i \(-0.438915\pi\)
0.190728 + 0.981643i \(0.438915\pi\)
\(744\) 0 0
\(745\) 33218.9 1.63362
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3983.29 0.194321
\(750\) 0 0
\(751\) −7506.12 −0.364717 −0.182358 0.983232i \(-0.558373\pi\)
−0.182358 + 0.983232i \(0.558373\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25950.1 1.25089
\(756\) 0 0
\(757\) −2741.62 −0.131632 −0.0658162 0.997832i \(-0.520965\pi\)
−0.0658162 + 0.997832i \(0.520965\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −29740.0 −1.41666 −0.708328 0.705883i \(-0.750550\pi\)
−0.708328 + 0.705883i \(0.750550\pi\)
\(762\) 0 0
\(763\) −2213.78 −0.105038
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8898.60 −0.418918
\(768\) 0 0
\(769\) −19896.3 −0.933004 −0.466502 0.884520i \(-0.654486\pi\)
−0.466502 + 0.884520i \(0.654486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13601.3 0.632866 0.316433 0.948615i \(-0.397515\pi\)
0.316433 + 0.948615i \(0.397515\pi\)
\(774\) 0 0
\(775\) −45600.1 −2.11355
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15346.1 0.705818
\(780\) 0 0
\(781\) 19960.8 0.914539
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14708.9 0.668770
\(786\) 0 0
\(787\) 1498.29 0.0678631 0.0339315 0.999424i \(-0.489197\pi\)
0.0339315 + 0.999424i \(0.489197\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1847.91 −0.0830647
\(792\) 0 0
\(793\) 4005.62 0.179374
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3713.30 0.165034 0.0825168 0.996590i \(-0.473704\pi\)
0.0825168 + 0.996590i \(0.473704\pi\)
\(798\) 0 0
\(799\) 13527.4 0.598955
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1484.42 −0.0652354
\(804\) 0 0
\(805\) 2669.80 0.116892
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34527.6 1.50053 0.750263 0.661139i \(-0.229927\pi\)
0.750263 + 0.661139i \(0.229927\pi\)
\(810\) 0 0
\(811\) 37279.2 1.61412 0.807059 0.590471i \(-0.201058\pi\)
0.807059 + 0.590471i \(0.201058\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 52451.6 2.25436
\(816\) 0 0
\(817\) 7646.90 0.327455
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13877.9 −0.589943 −0.294972 0.955506i \(-0.595310\pi\)
−0.294972 + 0.955506i \(0.595310\pi\)
\(822\) 0 0
\(823\) −18945.1 −0.802410 −0.401205 0.915988i \(-0.631408\pi\)
−0.401205 + 0.915988i \(0.631408\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7804.75 −0.328171 −0.164086 0.986446i \(-0.552467\pi\)
−0.164086 + 0.986446i \(0.552467\pi\)
\(828\) 0 0
\(829\) 5784.85 0.242360 0.121180 0.992631i \(-0.461332\pi\)
0.121180 + 0.992631i \(0.461332\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13354.0 −0.555448
\(834\) 0 0
\(835\) −30009.7 −1.24375
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5011.42 −0.206214 −0.103107 0.994670i \(-0.532878\pi\)
−0.103107 + 0.994670i \(0.532878\pi\)
\(840\) 0 0
\(841\) −16309.0 −0.668704
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3268.45 −0.133063
\(846\) 0 0
\(847\) −11613.9 −0.471142
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11919.6 0.480138
\(852\) 0 0
\(853\) −22059.0 −0.885446 −0.442723 0.896659i \(-0.645987\pi\)
−0.442723 + 0.896659i \(0.645987\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13956.2 −0.556283 −0.278141 0.960540i \(-0.589718\pi\)
−0.278141 + 0.960540i \(0.589718\pi\)
\(858\) 0 0
\(859\) −12498.5 −0.496442 −0.248221 0.968703i \(-0.579846\pi\)
−0.248221 + 0.968703i \(0.579846\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38631.2 −1.52378 −0.761890 0.647707i \(-0.775728\pi\)
−0.761890 + 0.647707i \(0.775728\pi\)
\(864\) 0 0
\(865\) −76784.7 −3.01822
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10187.6 0.397687
\(870\) 0 0
\(871\) −8746.51 −0.340257
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11613.5 0.448696
\(876\) 0 0
\(877\) −856.756 −0.0329881 −0.0164941 0.999864i \(-0.505250\pi\)
−0.0164941 + 0.999864i \(0.505250\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33638.6 −1.28640 −0.643198 0.765700i \(-0.722393\pi\)
−0.643198 + 0.765700i \(0.722393\pi\)
\(882\) 0 0
\(883\) 31109.1 1.18562 0.592811 0.805342i \(-0.298018\pi\)
0.592811 + 0.805342i \(0.298018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26080.3 0.987248 0.493624 0.869675i \(-0.335672\pi\)
0.493624 + 0.869675i \(0.335672\pi\)
\(888\) 0 0
\(889\) −5466.35 −0.206227
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 34818.8 1.30478
\(894\) 0 0
\(895\) 52042.8 1.94369
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16459.3 −0.610621
\(900\) 0 0
\(901\) 1049.09 0.0387905
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 84536.9 3.10508
\(906\) 0 0
\(907\) −20169.0 −0.738369 −0.369184 0.929356i \(-0.620363\pi\)
−0.369184 + 0.929356i \(0.620363\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19982.2 0.726716 0.363358 0.931650i \(-0.381630\pi\)
0.363358 + 0.931650i \(0.381630\pi\)
\(912\) 0 0
\(913\) 12281.3 0.445184
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4128.52 0.148676
\(918\) 0 0
\(919\) −38513.1 −1.38241 −0.691203 0.722661i \(-0.742919\pi\)
−0.691203 + 0.722661i \(0.742919\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4248.88 −0.151521
\(924\) 0 0
\(925\) 104103. 3.70043
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23218.9 −0.820009 −0.410005 0.912083i \(-0.634473\pi\)
−0.410005 + 0.912083i \(0.634473\pi\)
\(930\) 0 0
\(931\) −34372.3 −1.21000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 49358.3 1.72640
\(936\) 0 0
\(937\) −11112.9 −0.387452 −0.193726 0.981056i \(-0.562057\pi\)
−0.193726 + 0.981056i \(0.562057\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −45570.4 −1.57869 −0.789347 0.613947i \(-0.789581\pi\)
−0.789347 + 0.613947i \(0.789581\pi\)
\(942\) 0 0
\(943\) 4068.16 0.140485
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34903.9 1.19770 0.598852 0.800860i \(-0.295624\pi\)
0.598852 + 0.800860i \(0.295624\pi\)
\(948\) 0 0
\(949\) 315.975 0.0108082
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2886.52 0.0981151 0.0490575 0.998796i \(-0.484378\pi\)
0.0490575 + 0.998796i \(0.484378\pi\)
\(954\) 0 0
\(955\) −27239.8 −0.922994
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2366.96 −0.0797008
\(960\) 0 0
\(961\) 3737.42 0.125455
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 79906.8 2.66559
\(966\) 0 0
\(967\) −11593.8 −0.385556 −0.192778 0.981242i \(-0.561750\pi\)
−0.192778 + 0.981242i \(0.561750\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4952.12 −0.163667 −0.0818337 0.996646i \(-0.526078\pi\)
−0.0818337 + 0.996646i \(0.526078\pi\)
\(972\) 0 0
\(973\) 1971.03 0.0649418
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19650.1 0.643462 0.321731 0.946831i \(-0.395735\pi\)
0.321731 + 0.946831i \(0.395735\pi\)
\(978\) 0 0
\(979\) 6646.77 0.216988
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 56818.4 1.84357 0.921783 0.387707i \(-0.126733\pi\)
0.921783 + 0.387707i \(0.126733\pi\)
\(984\) 0 0
\(985\) −65779.7 −2.12783
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2027.15 0.0651764
\(990\) 0 0
\(991\) 19120.4 0.612897 0.306448 0.951887i \(-0.400859\pi\)
0.306448 + 0.951887i \(0.400859\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −68090.9 −2.16947
\(996\) 0 0
\(997\) 38887.9 1.23530 0.617650 0.786453i \(-0.288085\pi\)
0.617650 + 0.786453i \(0.288085\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.bk.1.1 3
3.2 odd 2 624.4.a.t.1.3 3
4.3 odd 2 117.4.a.f.1.2 3
12.11 even 2 39.4.a.c.1.2 3
24.5 odd 2 2496.4.a.bp.1.1 3
24.11 even 2 2496.4.a.bl.1.1 3
52.51 odd 2 1521.4.a.u.1.2 3
60.59 even 2 975.4.a.l.1.2 3
84.83 odd 2 1911.4.a.k.1.2 3
156.47 odd 4 507.4.b.g.337.4 6
156.83 odd 4 507.4.b.g.337.3 6
156.155 even 2 507.4.a.h.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.a.c.1.2 3 12.11 even 2
117.4.a.f.1.2 3 4.3 odd 2
507.4.a.h.1.2 3 156.155 even 2
507.4.b.g.337.3 6 156.83 odd 4
507.4.b.g.337.4 6 156.47 odd 4
624.4.a.t.1.3 3 3.2 odd 2
975.4.a.l.1.2 3 60.59 even 2
1521.4.a.u.1.2 3 52.51 odd 2
1872.4.a.bk.1.1 3 1.1 even 1 trivial
1911.4.a.k.1.2 3 84.83 odd 2
2496.4.a.bl.1.1 3 24.11 even 2
2496.4.a.bp.1.1 3 24.5 odd 2