Properties

Label 2-1872-1.1-c3-0-51
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.2·5-s + 14.9·7-s + 55.0·11-s − 13·13-s − 83.5·17-s − 64.3·19-s − 21.1·23-s + 286.·25-s + 269.·29-s − 159.·31-s + 303.·35-s + 156.·37-s + 472.·41-s − 364.·43-s + 8.13·47-s − 119.·49-s + 640.·53-s + 1.11e3·55-s + 442.·59-s + 271.·61-s − 263.·65-s + 714.·67-s − 1.12e3·71-s + 425.·73-s + 822.·77-s − 12.3·79-s − 475.·83-s + ⋯
L(s)  = 1  + 1.81·5-s + 0.806·7-s + 1.50·11-s − 0.277·13-s − 1.19·17-s − 0.776·19-s − 0.191·23-s + 2.29·25-s + 1.72·29-s − 0.922·31-s + 1.46·35-s + 0.695·37-s + 1.79·41-s − 1.29·43-s + 0.0252·47-s − 0.349·49-s + 1.65·53-s + 2.73·55-s + 0.977·59-s + 0.570·61-s − 0.503·65-s + 1.30·67-s − 1.88·71-s + 0.682·73-s + 1.21·77-s − 0.0175·79-s − 0.628·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.101383872\)
\(L(\frac12)\) \(\approx\) \(4.101383872\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + 13T \)
good5 \( 1 - 20.2T + 125T^{2} \)
7 \( 1 - 14.9T + 343T^{2} \)
11 \( 1 - 55.0T + 1.33e3T^{2} \)
17 \( 1 + 83.5T + 4.91e3T^{2} \)
19 \( 1 + 64.3T + 6.85e3T^{2} \)
23 \( 1 + 21.1T + 1.21e4T^{2} \)
29 \( 1 - 269.T + 2.43e4T^{2} \)
31 \( 1 + 159.T + 2.97e4T^{2} \)
37 \( 1 - 156.T + 5.06e4T^{2} \)
41 \( 1 - 472.T + 6.89e4T^{2} \)
43 \( 1 + 364.T + 7.95e4T^{2} \)
47 \( 1 - 8.13T + 1.03e5T^{2} \)
53 \( 1 - 640.T + 1.48e5T^{2} \)
59 \( 1 - 442.T + 2.05e5T^{2} \)
61 \( 1 - 271.T + 2.26e5T^{2} \)
67 \( 1 - 714.T + 3.00e5T^{2} \)
71 \( 1 + 1.12e3T + 3.57e5T^{2} \)
73 \( 1 - 425.T + 3.89e5T^{2} \)
79 \( 1 + 12.3T + 4.93e5T^{2} \)
83 \( 1 + 475.T + 5.71e5T^{2} \)
89 \( 1 - 302.T + 7.04e5T^{2} \)
97 \( 1 + 1.24e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.915777952794354009612025873827, −8.395696442935371946234438764199, −6.98672060998667312800834643042, −6.47556036209014060901459343212, −5.76663480079656310993450931466, −4.82575651737153552524485163280, −4.09268290159145792317328070068, −2.54591724813866756045013647559, −1.89696638219912390203250864842, −1.01471752348186714701707339569, 1.01471752348186714701707339569, 1.89696638219912390203250864842, 2.54591724813866756045013647559, 4.09268290159145792317328070068, 4.82575651737153552524485163280, 5.76663480079656310993450931466, 6.47556036209014060901459343212, 6.98672060998667312800834643042, 8.395696442935371946234438764199, 8.915777952794354009612025873827

Graph of the $Z$-function along the critical line