L(s) = 1 | + 20.2·5-s + 14.9·7-s + 55.0·11-s − 13·13-s − 83.5·17-s − 64.3·19-s − 21.1·23-s + 286.·25-s + 269.·29-s − 159.·31-s + 303.·35-s + 156.·37-s + 472.·41-s − 364.·43-s + 8.13·47-s − 119.·49-s + 640.·53-s + 1.11e3·55-s + 442.·59-s + 271.·61-s − 263.·65-s + 714.·67-s − 1.12e3·71-s + 425.·73-s + 822.·77-s − 12.3·79-s − 475.·83-s + ⋯ |
L(s) = 1 | + 1.81·5-s + 0.806·7-s + 1.50·11-s − 0.277·13-s − 1.19·17-s − 0.776·19-s − 0.191·23-s + 2.29·25-s + 1.72·29-s − 0.922·31-s + 1.46·35-s + 0.695·37-s + 1.79·41-s − 1.29·43-s + 0.0252·47-s − 0.349·49-s + 1.65·53-s + 2.73·55-s + 0.977·59-s + 0.570·61-s − 0.503·65-s + 1.30·67-s − 1.88·71-s + 0.682·73-s + 1.21·77-s − 0.0175·79-s − 0.628·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.101383872 |
L(21) |
≈ |
4.101383872 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+13T |
good | 5 | 1−20.2T+125T2 |
| 7 | 1−14.9T+343T2 |
| 11 | 1−55.0T+1.33e3T2 |
| 17 | 1+83.5T+4.91e3T2 |
| 19 | 1+64.3T+6.85e3T2 |
| 23 | 1+21.1T+1.21e4T2 |
| 29 | 1−269.T+2.43e4T2 |
| 31 | 1+159.T+2.97e4T2 |
| 37 | 1−156.T+5.06e4T2 |
| 41 | 1−472.T+6.89e4T2 |
| 43 | 1+364.T+7.95e4T2 |
| 47 | 1−8.13T+1.03e5T2 |
| 53 | 1−640.T+1.48e5T2 |
| 59 | 1−442.T+2.05e5T2 |
| 61 | 1−271.T+2.26e5T2 |
| 67 | 1−714.T+3.00e5T2 |
| 71 | 1+1.12e3T+3.57e5T2 |
| 73 | 1−425.T+3.89e5T2 |
| 79 | 1+12.3T+4.93e5T2 |
| 83 | 1+475.T+5.71e5T2 |
| 89 | 1−302.T+7.04e5T2 |
| 97 | 1+1.24e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.915777952794354009612025873827, −8.395696442935371946234438764199, −6.98672060998667312800834643042, −6.47556036209014060901459343212, −5.76663480079656310993450931466, −4.82575651737153552524485163280, −4.09268290159145792317328070068, −2.54591724813866756045013647559, −1.89696638219912390203250864842, −1.01471752348186714701707339569,
1.01471752348186714701707339569, 1.89696638219912390203250864842, 2.54591724813866756045013647559, 4.09268290159145792317328070068, 4.82575651737153552524485163280, 5.76663480079656310993450931466, 6.47556036209014060901459343212, 6.98672060998667312800834643042, 8.395696442935371946234438764199, 8.915777952794354009612025873827