Properties

Label 1872.4.a.bs.1.5
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 75x^{3} - 113x^{2} + 1320x + 3267 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 936)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(7.80718\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.2924 q^{5} +14.9364 q^{7} +55.0472 q^{11} -13.0000 q^{13} -83.5682 q^{17} -64.3057 q^{19} -21.1653 q^{23} +286.780 q^{25} +269.014 q^{29} -159.257 q^{31} +303.094 q^{35} +156.548 q^{37} +472.407 q^{41} -364.827 q^{43} +8.13086 q^{47} -119.905 q^{49} +640.041 q^{53} +1117.04 q^{55} +442.897 q^{59} +271.848 q^{61} -263.801 q^{65} +714.959 q^{67} -1125.27 q^{71} +425.534 q^{73} +822.206 q^{77} -12.3130 q^{79} -475.200 q^{83} -1695.80 q^{85} +302.167 q^{89} -194.173 q^{91} -1304.92 q^{95} -1242.58 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{5} + 18 q^{7} + 28 q^{11} - 65 q^{13} - 48 q^{17} - 90 q^{19} - 52 q^{23} + 155 q^{25} + 200 q^{29} + 162 q^{31} - 308 q^{35} + 54 q^{37} + 898 q^{41} - 8 q^{43} - 480 q^{47} + 601 q^{49} + 676 q^{53}+ \cdots + 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 20.2924 1.81500 0.907502 0.420048i \(-0.137987\pi\)
0.907502 + 0.420048i \(0.137987\pi\)
\(6\) 0 0
\(7\) 14.9364 0.806488 0.403244 0.915092i \(-0.367883\pi\)
0.403244 + 0.915092i \(0.367883\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.0472 1.50885 0.754426 0.656385i \(-0.227915\pi\)
0.754426 + 0.656385i \(0.227915\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −83.5682 −1.19225 −0.596125 0.802891i \(-0.703294\pi\)
−0.596125 + 0.802891i \(0.703294\pi\)
\(18\) 0 0
\(19\) −64.3057 −0.776460 −0.388230 0.921562i \(-0.626913\pi\)
−0.388230 + 0.921562i \(0.626913\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −21.1653 −0.191881 −0.0959407 0.995387i \(-0.530586\pi\)
−0.0959407 + 0.995387i \(0.530586\pi\)
\(24\) 0 0
\(25\) 286.780 2.29424
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 269.014 1.72257 0.861287 0.508119i \(-0.169659\pi\)
0.861287 + 0.508119i \(0.169659\pi\)
\(30\) 0 0
\(31\) −159.257 −0.922691 −0.461346 0.887221i \(-0.652633\pi\)
−0.461346 + 0.887221i \(0.652633\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 303.094 1.46378
\(36\) 0 0
\(37\) 156.548 0.695577 0.347788 0.937573i \(-0.386933\pi\)
0.347788 + 0.937573i \(0.386933\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 472.407 1.79945 0.899727 0.436453i \(-0.143765\pi\)
0.899727 + 0.436453i \(0.143765\pi\)
\(42\) 0 0
\(43\) −364.827 −1.29385 −0.646925 0.762554i \(-0.723945\pi\)
−0.646925 + 0.762554i \(0.723945\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.13086 0.0252342 0.0126171 0.999920i \(-0.495984\pi\)
0.0126171 + 0.999920i \(0.495984\pi\)
\(48\) 0 0
\(49\) −119.905 −0.349577
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 640.041 1.65880 0.829400 0.558655i \(-0.188682\pi\)
0.829400 + 0.558655i \(0.188682\pi\)
\(54\) 0 0
\(55\) 1117.04 2.73857
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 442.897 0.977292 0.488646 0.872482i \(-0.337491\pi\)
0.488646 + 0.872482i \(0.337491\pi\)
\(60\) 0 0
\(61\) 271.848 0.570599 0.285299 0.958438i \(-0.407907\pi\)
0.285299 + 0.958438i \(0.407907\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −263.801 −0.503391
\(66\) 0 0
\(67\) 714.959 1.30367 0.651837 0.758359i \(-0.273999\pi\)
0.651837 + 0.758359i \(0.273999\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1125.27 −1.88091 −0.940454 0.339920i \(-0.889600\pi\)
−0.940454 + 0.339920i \(0.889600\pi\)
\(72\) 0 0
\(73\) 425.534 0.682260 0.341130 0.940016i \(-0.389190\pi\)
0.341130 + 0.940016i \(0.389190\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 822.206 1.21687
\(78\) 0 0
\(79\) −12.3130 −0.0175357 −0.00876786 0.999962i \(-0.502791\pi\)
−0.00876786 + 0.999962i \(0.502791\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −475.200 −0.628433 −0.314217 0.949351i \(-0.601742\pi\)
−0.314217 + 0.949351i \(0.601742\pi\)
\(84\) 0 0
\(85\) −1695.80 −2.16394
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 302.167 0.359884 0.179942 0.983677i \(-0.442409\pi\)
0.179942 + 0.983677i \(0.442409\pi\)
\(90\) 0 0
\(91\) −194.173 −0.223680
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1304.92 −1.40928
\(96\) 0 0
\(97\) −1242.58 −1.30066 −0.650332 0.759650i \(-0.725370\pi\)
−0.650332 + 0.759650i \(0.725370\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −859.138 −0.846410 −0.423205 0.906034i \(-0.639095\pi\)
−0.423205 + 0.906034i \(0.639095\pi\)
\(102\) 0 0
\(103\) 1234.75 1.18120 0.590602 0.806963i \(-0.298890\pi\)
0.590602 + 0.806963i \(0.298890\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 598.360 0.540613 0.270307 0.962774i \(-0.412875\pi\)
0.270307 + 0.962774i \(0.412875\pi\)
\(108\) 0 0
\(109\) 646.709 0.568289 0.284144 0.958782i \(-0.408291\pi\)
0.284144 + 0.958782i \(0.408291\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −481.406 −0.400769 −0.200384 0.979717i \(-0.564219\pi\)
−0.200384 + 0.979717i \(0.564219\pi\)
\(114\) 0 0
\(115\) −429.494 −0.348266
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1248.21 −0.961536
\(120\) 0 0
\(121\) 1699.20 1.27663
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3282.89 2.34905
\(126\) 0 0
\(127\) −2705.33 −1.89023 −0.945115 0.326738i \(-0.894051\pi\)
−0.945115 + 0.326738i \(0.894051\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 906.578 0.604642 0.302321 0.953206i \(-0.402239\pi\)
0.302321 + 0.953206i \(0.402239\pi\)
\(132\) 0 0
\(133\) −960.494 −0.626206
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 424.637 0.264811 0.132406 0.991196i \(-0.457730\pi\)
0.132406 + 0.991196i \(0.457730\pi\)
\(138\) 0 0
\(139\) 2510.62 1.53200 0.766001 0.642840i \(-0.222244\pi\)
0.766001 + 0.642840i \(0.222244\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −715.614 −0.418480
\(144\) 0 0
\(145\) 5458.93 3.12648
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 280.866 0.154426 0.0772130 0.997015i \(-0.475398\pi\)
0.0772130 + 0.997015i \(0.475398\pi\)
\(150\) 0 0
\(151\) −2774.83 −1.49545 −0.747724 0.664010i \(-0.768853\pi\)
−0.747724 + 0.664010i \(0.768853\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3231.70 −1.67469
\(156\) 0 0
\(157\) 15.6740 0.00796763 0.00398382 0.999992i \(-0.498732\pi\)
0.00398382 + 0.999992i \(0.498732\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −316.133 −0.154750
\(162\) 0 0
\(163\) 2600.49 1.24961 0.624805 0.780781i \(-0.285178\pi\)
0.624805 + 0.780781i \(0.285178\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 566.453 0.262476 0.131238 0.991351i \(-0.458105\pi\)
0.131238 + 0.991351i \(0.458105\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1683.73 −0.739949 −0.369975 0.929042i \(-0.620634\pi\)
−0.369975 + 0.929042i \(0.620634\pi\)
\(174\) 0 0
\(175\) 4283.45 1.85028
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3508.39 −1.46497 −0.732484 0.680784i \(-0.761639\pi\)
−0.732484 + 0.680784i \(0.761639\pi\)
\(180\) 0 0
\(181\) 2237.07 0.918675 0.459338 0.888262i \(-0.348087\pi\)
0.459338 + 0.888262i \(0.348087\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3176.73 1.26247
\(186\) 0 0
\(187\) −4600.20 −1.79893
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4512.58 −1.70952 −0.854762 0.519021i \(-0.826297\pi\)
−0.854762 + 0.519021i \(0.826297\pi\)
\(192\) 0 0
\(193\) −1822.56 −0.679743 −0.339871 0.940472i \(-0.610384\pi\)
−0.339871 + 0.940472i \(0.610384\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1936.31 0.700287 0.350143 0.936696i \(-0.386133\pi\)
0.350143 + 0.936696i \(0.386133\pi\)
\(198\) 0 0
\(199\) 2247.90 0.800752 0.400376 0.916351i \(-0.368880\pi\)
0.400376 + 0.916351i \(0.368880\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4018.09 1.38924
\(204\) 0 0
\(205\) 9586.26 3.26602
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3539.85 −1.17156
\(210\) 0 0
\(211\) 2001.54 0.653042 0.326521 0.945190i \(-0.394124\pi\)
0.326521 + 0.945190i \(0.394124\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7403.19 −2.34834
\(216\) 0 0
\(217\) −2378.72 −0.744140
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1086.39 0.330671
\(222\) 0 0
\(223\) 4774.04 1.43360 0.716801 0.697278i \(-0.245606\pi\)
0.716801 + 0.697278i \(0.245606\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2078.64 0.607773 0.303887 0.952708i \(-0.401716\pi\)
0.303887 + 0.952708i \(0.401716\pi\)
\(228\) 0 0
\(229\) −5166.32 −1.49083 −0.745415 0.666601i \(-0.767749\pi\)
−0.745415 + 0.666601i \(0.767749\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1691.35 −0.475553 −0.237777 0.971320i \(-0.576419\pi\)
−0.237777 + 0.971320i \(0.576419\pi\)
\(234\) 0 0
\(235\) 164.994 0.0458002
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5586.28 −1.51191 −0.755955 0.654624i \(-0.772827\pi\)
−0.755955 + 0.654624i \(0.772827\pi\)
\(240\) 0 0
\(241\) −2961.10 −0.791458 −0.395729 0.918367i \(-0.629508\pi\)
−0.395729 + 0.918367i \(0.629508\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2433.15 −0.634483
\(246\) 0 0
\(247\) 835.975 0.215351
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −663.525 −0.166858 −0.0834290 0.996514i \(-0.526587\pi\)
−0.0834290 + 0.996514i \(0.526587\pi\)
\(252\) 0 0
\(253\) −1165.09 −0.289521
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 140.799 0.0341743 0.0170871 0.999854i \(-0.494561\pi\)
0.0170871 + 0.999854i \(0.494561\pi\)
\(258\) 0 0
\(259\) 2338.26 0.560975
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 478.308 0.112144 0.0560718 0.998427i \(-0.482142\pi\)
0.0560718 + 0.998427i \(0.482142\pi\)
\(264\) 0 0
\(265\) 12987.9 3.01073
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7177.45 −1.62683 −0.813414 0.581686i \(-0.802393\pi\)
−0.813414 + 0.581686i \(0.802393\pi\)
\(270\) 0 0
\(271\) 2557.12 0.573189 0.286595 0.958052i \(-0.407477\pi\)
0.286595 + 0.958052i \(0.407477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15786.4 3.46167
\(276\) 0 0
\(277\) 5904.26 1.28070 0.640348 0.768085i \(-0.278790\pi\)
0.640348 + 0.768085i \(0.278790\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6528.43 1.38596 0.692978 0.720959i \(-0.256298\pi\)
0.692978 + 0.720959i \(0.256298\pi\)
\(282\) 0 0
\(283\) 158.324 0.0332558 0.0166279 0.999862i \(-0.494707\pi\)
0.0166279 + 0.999862i \(0.494707\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7056.05 1.45124
\(288\) 0 0
\(289\) 2070.64 0.421462
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 213.859 0.0426409 0.0213204 0.999773i \(-0.493213\pi\)
0.0213204 + 0.999773i \(0.493213\pi\)
\(294\) 0 0
\(295\) 8987.42 1.77379
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 275.149 0.0532184
\(300\) 0 0
\(301\) −5449.18 −1.04347
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5516.43 1.03564
\(306\) 0 0
\(307\) 9044.29 1.68138 0.840692 0.541514i \(-0.182149\pi\)
0.840692 + 0.541514i \(0.182149\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8093.05 −1.47561 −0.737805 0.675014i \(-0.764138\pi\)
−0.737805 + 0.675014i \(0.764138\pi\)
\(312\) 0 0
\(313\) 3866.24 0.698188 0.349094 0.937088i \(-0.386489\pi\)
0.349094 + 0.937088i \(0.386489\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2426.39 0.429903 0.214952 0.976625i \(-0.431041\pi\)
0.214952 + 0.976625i \(0.431041\pi\)
\(318\) 0 0
\(319\) 14808.5 2.59911
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5373.91 0.925736
\(324\) 0 0
\(325\) −3728.14 −0.636307
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 121.446 0.0203511
\(330\) 0 0
\(331\) 1848.92 0.307027 0.153514 0.988147i \(-0.450941\pi\)
0.153514 + 0.988147i \(0.450941\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14508.2 2.36617
\(336\) 0 0
\(337\) −5090.31 −0.822810 −0.411405 0.911453i \(-0.634962\pi\)
−0.411405 + 0.911453i \(0.634962\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8766.67 −1.39220
\(342\) 0 0
\(343\) −6914.12 −1.08842
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2231.94 0.345294 0.172647 0.984984i \(-0.444768\pi\)
0.172647 + 0.984984i \(0.444768\pi\)
\(348\) 0 0
\(349\) −3399.63 −0.521426 −0.260713 0.965416i \(-0.583958\pi\)
−0.260713 + 0.965416i \(0.583958\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12189.2 1.83786 0.918929 0.394424i \(-0.129056\pi\)
0.918929 + 0.394424i \(0.129056\pi\)
\(354\) 0 0
\(355\) −22834.3 −3.41386
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3323.43 −0.488590 −0.244295 0.969701i \(-0.578557\pi\)
−0.244295 + 0.969701i \(0.578557\pi\)
\(360\) 0 0
\(361\) −2723.77 −0.397109
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8635.09 1.23830
\(366\) 0 0
\(367\) −12444.2 −1.76998 −0.884992 0.465606i \(-0.845836\pi\)
−0.884992 + 0.465606i \(0.845836\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9559.89 1.33780
\(372\) 0 0
\(373\) 2984.52 0.414297 0.207148 0.978310i \(-0.433582\pi\)
0.207148 + 0.978310i \(0.433582\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3497.18 −0.477756
\(378\) 0 0
\(379\) −1921.51 −0.260426 −0.130213 0.991486i \(-0.541566\pi\)
−0.130213 + 0.991486i \(0.541566\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11537.2 1.53923 0.769613 0.638510i \(-0.220449\pi\)
0.769613 + 0.638510i \(0.220449\pi\)
\(384\) 0 0
\(385\) 16684.5 2.20863
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12202.9 −1.59052 −0.795261 0.606267i \(-0.792666\pi\)
−0.795261 + 0.606267i \(0.792666\pi\)
\(390\) 0 0
\(391\) 1768.75 0.228771
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −249.860 −0.0318274
\(396\) 0 0
\(397\) 10973.3 1.38724 0.693622 0.720339i \(-0.256014\pi\)
0.693622 + 0.720339i \(0.256014\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3165.38 0.394193 0.197096 0.980384i \(-0.436849\pi\)
0.197096 + 0.980384i \(0.436849\pi\)
\(402\) 0 0
\(403\) 2070.34 0.255908
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8617.54 1.04952
\(408\) 0 0
\(409\) −10619.8 −1.28390 −0.641950 0.766746i \(-0.721875\pi\)
−0.641950 + 0.766746i \(0.721875\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6615.27 0.788174
\(414\) 0 0
\(415\) −9642.92 −1.14061
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −646.216 −0.0753454 −0.0376727 0.999290i \(-0.511994\pi\)
−0.0376727 + 0.999290i \(0.511994\pi\)
\(420\) 0 0
\(421\) 17148.5 1.98519 0.992595 0.121471i \(-0.0387612\pi\)
0.992595 + 0.121471i \(0.0387612\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23965.7 −2.73531
\(426\) 0 0
\(427\) 4060.42 0.460181
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5390.71 −0.602463 −0.301231 0.953551i \(-0.597398\pi\)
−0.301231 + 0.953551i \(0.597398\pi\)
\(432\) 0 0
\(433\) 6948.81 0.771220 0.385610 0.922662i \(-0.373991\pi\)
0.385610 + 0.922662i \(0.373991\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1361.05 0.148988
\(438\) 0 0
\(439\) −1963.07 −0.213422 −0.106711 0.994290i \(-0.534032\pi\)
−0.106711 + 0.994290i \(0.534032\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9563.45 −1.02567 −0.512837 0.858486i \(-0.671405\pi\)
−0.512837 + 0.858486i \(0.671405\pi\)
\(444\) 0 0
\(445\) 6131.69 0.653191
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 701.223 0.0737033 0.0368516 0.999321i \(-0.488267\pi\)
0.0368516 + 0.999321i \(0.488267\pi\)
\(450\) 0 0
\(451\) 26004.7 2.71511
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3940.22 −0.405979
\(456\) 0 0
\(457\) −3769.75 −0.385868 −0.192934 0.981212i \(-0.561800\pi\)
−0.192934 + 0.981212i \(0.561800\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2531.37 0.255743 0.127872 0.991791i \(-0.459185\pi\)
0.127872 + 0.991791i \(0.459185\pi\)
\(462\) 0 0
\(463\) 5368.85 0.538902 0.269451 0.963014i \(-0.413158\pi\)
0.269451 + 0.963014i \(0.413158\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14709.9 −1.45759 −0.728794 0.684733i \(-0.759919\pi\)
−0.728794 + 0.684733i \(0.759919\pi\)
\(468\) 0 0
\(469\) 10678.9 1.05140
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20082.7 −1.95223
\(474\) 0 0
\(475\) −18441.6 −1.78139
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6008.04 0.573098 0.286549 0.958066i \(-0.407492\pi\)
0.286549 + 0.958066i \(0.407492\pi\)
\(480\) 0 0
\(481\) −2035.13 −0.192918
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −25214.8 −2.36071
\(486\) 0 0
\(487\) 18786.3 1.74802 0.874011 0.485906i \(-0.161510\pi\)
0.874011 + 0.485906i \(0.161510\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3175.05 0.291829 0.145914 0.989297i \(-0.453388\pi\)
0.145914 + 0.989297i \(0.453388\pi\)
\(492\) 0 0
\(493\) −22481.0 −2.05374
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16807.4 −1.51693
\(498\) 0 0
\(499\) 8121.69 0.728611 0.364306 0.931279i \(-0.381306\pi\)
0.364306 + 0.931279i \(0.381306\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11855.0 −1.05087 −0.525436 0.850833i \(-0.676098\pi\)
−0.525436 + 0.850833i \(0.676098\pi\)
\(504\) 0 0
\(505\) −17433.9 −1.53624
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 160.964 0.0140169 0.00700845 0.999975i \(-0.497769\pi\)
0.00700845 + 0.999975i \(0.497769\pi\)
\(510\) 0 0
\(511\) 6355.93 0.550235
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25056.1 2.14389
\(516\) 0 0
\(517\) 447.581 0.0380747
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11369.2 −0.956037 −0.478019 0.878350i \(-0.658645\pi\)
−0.478019 + 0.878350i \(0.658645\pi\)
\(522\) 0 0
\(523\) −3512.06 −0.293636 −0.146818 0.989164i \(-0.546903\pi\)
−0.146818 + 0.989164i \(0.546903\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13308.8 1.10008
\(528\) 0 0
\(529\) −11719.0 −0.963181
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6141.30 −0.499079
\(534\) 0 0
\(535\) 12142.1 0.981215
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6600.43 −0.527459
\(540\) 0 0
\(541\) −2671.65 −0.212317 −0.106158 0.994349i \(-0.533855\pi\)
−0.106158 + 0.994349i \(0.533855\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13123.2 1.03145
\(546\) 0 0
\(547\) −12080.9 −0.944321 −0.472161 0.881513i \(-0.656526\pi\)
−0.472161 + 0.881513i \(0.656526\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −17299.1 −1.33751
\(552\) 0 0
\(553\) −183.912 −0.0141423
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2456.10 0.186837 0.0934185 0.995627i \(-0.470221\pi\)
0.0934185 + 0.995627i \(0.470221\pi\)
\(558\) 0 0
\(559\) 4742.74 0.358849
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4386.95 −0.328397 −0.164199 0.986427i \(-0.552504\pi\)
−0.164199 + 0.986427i \(0.552504\pi\)
\(564\) 0 0
\(565\) −9768.86 −0.727397
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1607.25 −0.118418 −0.0592088 0.998246i \(-0.518858\pi\)
−0.0592088 + 0.998246i \(0.518858\pi\)
\(570\) 0 0
\(571\) −14296.0 −1.04776 −0.523879 0.851792i \(-0.675516\pi\)
−0.523879 + 0.851792i \(0.675516\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6069.79 −0.440222
\(576\) 0 0
\(577\) −10876.2 −0.784715 −0.392358 0.919813i \(-0.628340\pi\)
−0.392358 + 0.919813i \(0.628340\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7097.76 −0.506824
\(582\) 0 0
\(583\) 35232.5 2.50288
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4976.96 −0.349951 −0.174975 0.984573i \(-0.555985\pi\)
−0.174975 + 0.984573i \(0.555985\pi\)
\(588\) 0 0
\(589\) 10241.1 0.716433
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10327.2 0.715153 0.357577 0.933884i \(-0.383603\pi\)
0.357577 + 0.933884i \(0.383603\pi\)
\(594\) 0 0
\(595\) −25329.0 −1.74519
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16875.2 1.15109 0.575543 0.817772i \(-0.304791\pi\)
0.575543 + 0.817772i \(0.304791\pi\)
\(600\) 0 0
\(601\) −19646.1 −1.33341 −0.666706 0.745321i \(-0.732296\pi\)
−0.666706 + 0.745321i \(0.732296\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 34480.7 2.31709
\(606\) 0 0
\(607\) −25695.1 −1.71817 −0.859087 0.511829i \(-0.828968\pi\)
−0.859087 + 0.511829i \(0.828968\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −105.701 −0.00699871
\(612\) 0 0
\(613\) 8080.89 0.532437 0.266219 0.963913i \(-0.414226\pi\)
0.266219 + 0.963913i \(0.414226\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11210.3 −0.731458 −0.365729 0.930721i \(-0.619180\pi\)
−0.365729 + 0.930721i \(0.619180\pi\)
\(618\) 0 0
\(619\) −6332.66 −0.411197 −0.205599 0.978636i \(-0.565914\pi\)
−0.205599 + 0.978636i \(0.565914\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4513.29 0.290242
\(624\) 0 0
\(625\) 30770.2 1.96929
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13082.4 −0.829302
\(630\) 0 0
\(631\) 19230.9 1.21327 0.606633 0.794982i \(-0.292520\pi\)
0.606633 + 0.794982i \(0.292520\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −54897.5 −3.43077
\(636\) 0 0
\(637\) 1558.76 0.0969551
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17566.7 1.08244 0.541220 0.840881i \(-0.317963\pi\)
0.541220 + 0.840881i \(0.317963\pi\)
\(642\) 0 0
\(643\) −12050.3 −0.739061 −0.369530 0.929219i \(-0.620481\pi\)
−0.369530 + 0.929219i \(0.620481\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31097.4 1.88959 0.944797 0.327657i \(-0.106259\pi\)
0.944797 + 0.327657i \(0.106259\pi\)
\(648\) 0 0
\(649\) 24380.2 1.47459
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24981.3 1.49708 0.748540 0.663090i \(-0.230755\pi\)
0.748540 + 0.663090i \(0.230755\pi\)
\(654\) 0 0
\(655\) 18396.6 1.09743
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −26069.8 −1.54103 −0.770513 0.637424i \(-0.780000\pi\)
−0.770513 + 0.637424i \(0.780000\pi\)
\(660\) 0 0
\(661\) −1597.47 −0.0940008 −0.0470004 0.998895i \(-0.514966\pi\)
−0.0470004 + 0.998895i \(0.514966\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19490.7 −1.13657
\(666\) 0 0
\(667\) −5693.77 −0.330530
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14964.5 0.860949
\(672\) 0 0
\(673\) −12156.0 −0.696256 −0.348128 0.937447i \(-0.613183\pi\)
−0.348128 + 0.937447i \(0.613183\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20729.1 −1.17679 −0.588393 0.808575i \(-0.700239\pi\)
−0.588393 + 0.808575i \(0.700239\pi\)
\(678\) 0 0
\(679\) −18559.6 −1.04897
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17293.6 −0.968846 −0.484423 0.874834i \(-0.660971\pi\)
−0.484423 + 0.874834i \(0.660971\pi\)
\(684\) 0 0
\(685\) 8616.88 0.480634
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8320.53 −0.460068
\(690\) 0 0
\(691\) −13226.1 −0.728137 −0.364069 0.931372i \(-0.618613\pi\)
−0.364069 + 0.931372i \(0.618613\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 50946.4 2.78059
\(696\) 0 0
\(697\) −39478.2 −2.14540
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5761.09 0.310404 0.155202 0.987883i \(-0.450397\pi\)
0.155202 + 0.987883i \(0.450397\pi\)
\(702\) 0 0
\(703\) −10066.9 −0.540088
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12832.4 −0.682620
\(708\) 0 0
\(709\) −4024.76 −0.213192 −0.106596 0.994302i \(-0.533995\pi\)
−0.106596 + 0.994302i \(0.533995\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3370.73 0.177047
\(714\) 0 0
\(715\) −14521.5 −0.759543
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19265.3 −0.999271 −0.499635 0.866236i \(-0.666533\pi\)
−0.499635 + 0.866236i \(0.666533\pi\)
\(720\) 0 0
\(721\) 18442.8 0.952627
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 77147.8 3.95199
\(726\) 0 0
\(727\) −2098.78 −0.107069 −0.0535347 0.998566i \(-0.517049\pi\)
−0.0535347 + 0.998566i \(0.517049\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30487.9 1.54259
\(732\) 0 0
\(733\) −3121.61 −0.157298 −0.0786489 0.996902i \(-0.525061\pi\)
−0.0786489 + 0.996902i \(0.525061\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 39356.5 1.96705
\(738\) 0 0
\(739\) −30904.1 −1.53833 −0.769166 0.639049i \(-0.779328\pi\)
−0.769166 + 0.639049i \(0.779328\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12460.7 0.615259 0.307629 0.951506i \(-0.400464\pi\)
0.307629 + 0.951506i \(0.400464\pi\)
\(744\) 0 0
\(745\) 5699.44 0.280284
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8937.32 0.435998
\(750\) 0 0
\(751\) 7333.71 0.356339 0.178170 0.984000i \(-0.442982\pi\)
0.178170 + 0.984000i \(0.442982\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −56307.9 −2.71424
\(756\) 0 0
\(757\) −10643.5 −0.511025 −0.255513 0.966806i \(-0.582244\pi\)
−0.255513 + 0.966806i \(0.582244\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36572.1 1.74210 0.871050 0.491195i \(-0.163440\pi\)
0.871050 + 0.491195i \(0.163440\pi\)
\(762\) 0 0
\(763\) 9659.48 0.458318
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5757.65 −0.271052
\(768\) 0 0
\(769\) −10738.5 −0.503563 −0.251782 0.967784i \(-0.581016\pi\)
−0.251782 + 0.967784i \(0.581016\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −21069.6 −0.980363 −0.490182 0.871620i \(-0.663070\pi\)
−0.490182 + 0.871620i \(0.663070\pi\)
\(774\) 0 0
\(775\) −45671.7 −2.11687
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −30378.5 −1.39721
\(780\) 0 0
\(781\) −61942.8 −2.83801
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 318.062 0.0144613
\(786\) 0 0
\(787\) −30557.9 −1.38408 −0.692040 0.721859i \(-0.743288\pi\)
−0.692040 + 0.721859i \(0.743288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7190.46 −0.323215
\(792\) 0 0
\(793\) −3534.02 −0.158256
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23807.1 −1.05808 −0.529040 0.848597i \(-0.677448\pi\)
−0.529040 + 0.848597i \(0.677448\pi\)
\(798\) 0 0
\(799\) −679.481 −0.0300855
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23424.5 1.02943
\(804\) 0 0
\(805\) −6415.09 −0.280872
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11562.3 −0.502482 −0.251241 0.967925i \(-0.580839\pi\)
−0.251241 + 0.967925i \(0.580839\pi\)
\(810\) 0 0
\(811\) −40267.5 −1.74351 −0.871754 0.489944i \(-0.837017\pi\)
−0.871754 + 0.489944i \(0.837017\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 52770.2 2.26805
\(816\) 0 0
\(817\) 23460.4 1.00462
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27437.3 1.16635 0.583173 0.812348i \(-0.301811\pi\)
0.583173 + 0.812348i \(0.301811\pi\)
\(822\) 0 0
\(823\) 30067.9 1.27351 0.636756 0.771065i \(-0.280276\pi\)
0.636756 + 0.771065i \(0.280276\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33130.2 1.39305 0.696523 0.717534i \(-0.254729\pi\)
0.696523 + 0.717534i \(0.254729\pi\)
\(828\) 0 0
\(829\) −36696.9 −1.53744 −0.768719 0.639587i \(-0.779105\pi\)
−0.768719 + 0.639587i \(0.779105\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10020.2 0.416783
\(834\) 0 0
\(835\) 11494.7 0.476395
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12906.1 −0.531072 −0.265536 0.964101i \(-0.585549\pi\)
−0.265536 + 0.964101i \(0.585549\pi\)
\(840\) 0 0
\(841\) 47979.5 1.96726
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3429.41 0.139616
\(846\) 0 0
\(847\) 25379.9 1.02959
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3313.39 −0.133468
\(852\) 0 0
\(853\) 22827.3 0.916286 0.458143 0.888879i \(-0.348515\pi\)
0.458143 + 0.888879i \(0.348515\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24504.7 −0.976739 −0.488369 0.872637i \(-0.662408\pi\)
−0.488369 + 0.872637i \(0.662408\pi\)
\(858\) 0 0
\(859\) 4905.41 0.194843 0.0974217 0.995243i \(-0.468940\pi\)
0.0974217 + 0.995243i \(0.468940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −42275.8 −1.66754 −0.833770 0.552112i \(-0.813822\pi\)
−0.833770 + 0.552112i \(0.813822\pi\)
\(864\) 0 0
\(865\) −34166.8 −1.34301
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −677.797 −0.0264588
\(870\) 0 0
\(871\) −9294.46 −0.361574
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 49034.5 1.89448
\(876\) 0 0
\(877\) −27485.3 −1.05828 −0.529140 0.848534i \(-0.677485\pi\)
−0.529140 + 0.848534i \(0.677485\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34620.6 1.32395 0.661973 0.749528i \(-0.269719\pi\)
0.661973 + 0.749528i \(0.269719\pi\)
\(882\) 0 0
\(883\) 24023.5 0.915578 0.457789 0.889061i \(-0.348642\pi\)
0.457789 + 0.889061i \(0.348642\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8593.11 −0.325286 −0.162643 0.986685i \(-0.552002\pi\)
−0.162643 + 0.986685i \(0.552002\pi\)
\(888\) 0 0
\(889\) −40407.8 −1.52445
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −522.861 −0.0195934
\(894\) 0 0
\(895\) −71193.5 −2.65892
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −42842.4 −1.58940
\(900\) 0 0
\(901\) −53487.1 −1.97771
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 45395.5 1.66740
\(906\) 0 0
\(907\) 36918.7 1.35156 0.675781 0.737102i \(-0.263806\pi\)
0.675781 + 0.737102i \(0.263806\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −37525.8 −1.36475 −0.682373 0.731004i \(-0.739052\pi\)
−0.682373 + 0.731004i \(0.739052\pi\)
\(912\) 0 0
\(913\) −26158.4 −0.948212
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13541.0 0.487636
\(918\) 0 0
\(919\) 33444.0 1.20045 0.600227 0.799830i \(-0.295077\pi\)
0.600227 + 0.799830i \(0.295077\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14628.5 0.521670
\(924\) 0 0
\(925\) 44894.8 1.59582
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8887.12 −0.313861 −0.156930 0.987610i \(-0.550160\pi\)
−0.156930 + 0.987610i \(0.550160\pi\)
\(930\) 0 0
\(931\) 7710.57 0.271433
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −93348.9 −3.26506
\(936\) 0 0
\(937\) −31175.0 −1.08692 −0.543459 0.839436i \(-0.682886\pi\)
−0.543459 + 0.839436i \(0.682886\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6429.51 −0.222738 −0.111369 0.993779i \(-0.535523\pi\)
−0.111369 + 0.993779i \(0.535523\pi\)
\(942\) 0 0
\(943\) −9998.65 −0.345282
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16495.2 −0.566019 −0.283010 0.959117i \(-0.591333\pi\)
−0.283010 + 0.959117i \(0.591333\pi\)
\(948\) 0 0
\(949\) −5531.94 −0.189225
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 145.122 0.00493282 0.00246641 0.999997i \(-0.499215\pi\)
0.00246641 + 0.999997i \(0.499215\pi\)
\(954\) 0 0
\(955\) −91570.9 −3.10279
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6342.53 0.213567
\(960\) 0 0
\(961\) −4428.16 −0.148641
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −36983.9 −1.23374
\(966\) 0 0
\(967\) 17874.3 0.594415 0.297207 0.954813i \(-0.403945\pi\)
0.297207 + 0.954813i \(0.403945\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −661.941 −0.0218771 −0.0109386 0.999940i \(-0.503482\pi\)
−0.0109386 + 0.999940i \(0.503482\pi\)
\(972\) 0 0
\(973\) 37499.6 1.23554
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29539.7 −0.967306 −0.483653 0.875260i \(-0.660690\pi\)
−0.483653 + 0.875260i \(0.660690\pi\)
\(978\) 0 0
\(979\) 16633.5 0.543012
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5390.86 0.174915 0.0874577 0.996168i \(-0.472126\pi\)
0.0874577 + 0.996168i \(0.472126\pi\)
\(984\) 0 0
\(985\) 39292.3 1.27102
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7721.67 0.248266
\(990\) 0 0
\(991\) 50580.0 1.62132 0.810660 0.585517i \(-0.199109\pi\)
0.810660 + 0.585517i \(0.199109\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45615.2 1.45337
\(996\) 0 0
\(997\) −5946.26 −0.188887 −0.0944434 0.995530i \(-0.530107\pi\)
−0.0944434 + 0.995530i \(0.530107\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.bs.1.5 5
3.2 odd 2 1872.4.a.br.1.1 5
4.3 odd 2 936.4.a.q.1.5 yes 5
12.11 even 2 936.4.a.p.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.4.a.p.1.1 5 12.11 even 2
936.4.a.q.1.5 yes 5 4.3 odd 2
1872.4.a.br.1.1 5 3.2 odd 2
1872.4.a.bs.1.5 5 1.1 even 1 trivial