L(s) = 1 | + (−0.707 − 0.707i)5-s + (0.5 + 0.866i)13-s + (0.965 − 1.67i)17-s + (−0.448 + 0.258i)29-s + (0.5 − 1.86i)37-s + (0.448 − 1.67i)41-s + (0.866 − 0.5i)49-s + 0.517i·53-s + (−0.5 + 0.866i)61-s + (0.258 − 0.965i)65-s + (−0.366 − 0.366i)73-s + (−1.86 + 0.5i)85-s + (−1.93 − 0.517i)89-s + (0.366 + 1.36i)97-s + (0.965 + 1.67i)101-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)5-s + (0.5 + 0.866i)13-s + (0.965 − 1.67i)17-s + (−0.448 + 0.258i)29-s + (0.5 − 1.86i)37-s + (0.448 − 1.67i)41-s + (0.866 − 0.5i)49-s + 0.517i·53-s + (−0.5 + 0.866i)61-s + (0.258 − 0.965i)65-s + (−0.366 − 0.366i)73-s + (−1.86 + 0.5i)85-s + (−1.93 − 0.517i)89-s + (0.366 + 1.36i)97-s + (0.965 + 1.67i)101-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.556+0.831i)Λ(1−s)
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.556+0.831i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.556+0.831i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :0), 0.556+0.831i)
|
Particular Values
L(21) |
≈ |
1.003277967 |
L(21) |
≈ |
1.003277967 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−0.5−0.866i)T |
good | 5 | 1+(0.707+0.707i)T+iT2 |
| 7 | 1+(−0.866+0.5i)T2 |
| 11 | 1+(−0.866−0.5i)T2 |
| 17 | 1+(−0.965+1.67i)T+(−0.5−0.866i)T2 |
| 19 | 1+(0.866−0.5i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.448−0.258i)T+(0.5−0.866i)T2 |
| 31 | 1+iT2 |
| 37 | 1+(−0.5+1.86i)T+(−0.866−0.5i)T2 |
| 41 | 1+(−0.448+1.67i)T+(−0.866−0.5i)T2 |
| 43 | 1+(−0.5−0.866i)T2 |
| 47 | 1+iT2 |
| 53 | 1−0.517iT−T2 |
| 59 | 1+(0.866−0.5i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.866−0.5i)T2 |
| 71 | 1+(−0.866+0.5i)T2 |
| 73 | 1+(0.366+0.366i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1−iT2 |
| 89 | 1+(1.93+0.517i)T+(0.866+0.5i)T2 |
| 97 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.061061646021698896524688568300, −8.746379215077930883877215070430, −7.51605458738415921466398153742, −7.28312919271142887458709880223, −5.99912894979101797793164851256, −5.20287581705692144380683655781, −4.31816469667403411058172394207, −3.58655559361355808467770415431, −2.31948397193740713601295863855, −0.843146133039978458504499634867,
1.40845621313387123612021937459, 2.96798788247115091037400467971, 3.56116110526454750872983550992, 4.50548970662966015115204524158, 5.72739844306191333795445746318, 6.28909154567699655060071924809, 7.31365724711466279676719255599, 8.036036610785999870763598567055, 8.459076740171270628509899436987, 9.741239634285486443429458139397