L(s) = 1 | + (−0.707 − 0.707i)5-s + (0.5 + 0.866i)13-s + (0.965 − 1.67i)17-s + (−0.448 + 0.258i)29-s + (0.5 − 1.86i)37-s + (0.448 − 1.67i)41-s + (0.866 − 0.5i)49-s + 0.517i·53-s + (−0.5 + 0.866i)61-s + (0.258 − 0.965i)65-s + (−0.366 − 0.366i)73-s + (−1.86 + 0.5i)85-s + (−1.93 − 0.517i)89-s + (0.366 + 1.36i)97-s + (0.965 + 1.67i)101-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)5-s + (0.5 + 0.866i)13-s + (0.965 − 1.67i)17-s + (−0.448 + 0.258i)29-s + (0.5 − 1.86i)37-s + (0.448 − 1.67i)41-s + (0.866 − 0.5i)49-s + 0.517i·53-s + (−0.5 + 0.866i)61-s + (0.258 − 0.965i)65-s + (−0.366 − 0.366i)73-s + (−1.86 + 0.5i)85-s + (−1.93 − 0.517i)89-s + (0.366 + 1.36i)97-s + (0.965 + 1.67i)101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.556 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.556 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.003277967\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.003277967\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-0.5 + 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-0.448 + 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - 0.517iT - T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (1.93 + 0.517i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.061061646021698896524688568300, −8.746379215077930883877215070430, −7.51605458738415921466398153742, −7.28312919271142887458709880223, −5.99912894979101797793164851256, −5.20287581705692144380683655781, −4.31816469667403411058172394207, −3.58655559361355808467770415431, −2.31948397193740713601295863855, −0.843146133039978458504499634867,
1.40845621313387123612021937459, 2.96798788247115091037400467971, 3.56116110526454750872983550992, 4.50548970662966015115204524158, 5.72739844306191333795445746318, 6.28909154567699655060071924809, 7.31365724711466279676719255599, 8.036036610785999870763598567055, 8.459076740171270628509899436987, 9.741239634285486443429458139397