L(s) = 1 | + 1.11e3i·5-s + 285.·7-s + 2.21e4i·11-s − 3.84e4·13-s − 4.41e4i·17-s − 6.00e4·19-s + 2.89e5i·23-s − 8.55e5·25-s − 9.03e5i·29-s − 1.20e5·31-s + 3.18e5i·35-s − 2.67e6·37-s − 2.54e6i·41-s + 3.26e6·43-s + 9.69e5i·47-s + ⋯ |
L(s) = 1 | + 1.78i·5-s + 0.118·7-s + 1.51i·11-s − 1.34·13-s − 0.528i·17-s − 0.461·19-s + 1.03i·23-s − 2.19·25-s − 1.27i·29-s − 0.129·31-s + 0.212i·35-s − 1.42·37-s − 0.902i·41-s + 0.954·43-s + 0.198i·47-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)iΛ(9−s)
Λ(s)=(=(324s/2ΓC(s+4)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
i
|
Analytic conductor: |
131.990 |
Root analytic conductor: |
11.4887 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :4), i)
|
Particular Values
L(29) |
≈ |
0.2125550952 |
L(21) |
≈ |
0.2125550952 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−1.11e3iT−3.90e5T2 |
| 7 | 1−285.T+5.76e6T2 |
| 11 | 1−2.21e4iT−2.14e8T2 |
| 13 | 1+3.84e4T+8.15e8T2 |
| 17 | 1+4.41e4iT−6.97e9T2 |
| 19 | 1+6.00e4T+1.69e10T2 |
| 23 | 1−2.89e5iT−7.83e10T2 |
| 29 | 1+9.03e5iT−5.00e11T2 |
| 31 | 1+1.20e5T+8.52e11T2 |
| 37 | 1+2.67e6T+3.51e12T2 |
| 41 | 1+2.54e6iT−7.98e12T2 |
| 43 | 1−3.26e6T+1.16e13T2 |
| 47 | 1−9.69e5iT−2.38e13T2 |
| 53 | 1−1.46e7iT−6.22e13T2 |
| 59 | 1−2.83e6iT−1.46e14T2 |
| 61 | 1+1.03e7T+1.91e14T2 |
| 67 | 1−3.39e7T+4.06e14T2 |
| 71 | 1−7.67e6iT−6.45e14T2 |
| 73 | 1−1.26e7T+8.06e14T2 |
| 79 | 1−6.59e7T+1.51e15T2 |
| 83 | 1+1.75e6iT−2.25e15T2 |
| 89 | 1−8.38e6iT−3.93e15T2 |
| 97 | 1−1.15e8T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80406303242041297060349448305, −10.02614115073108065386260575472, −9.415221796809190324136199734053, −7.57884219111941284748611381798, −7.31123179622319059132133934433, −6.35136842824487178579287300397, −5.04434681147497821085779710720, −3.87429726202467499767408931418, −2.63175520755759583593173342304, −2.00275166007086312073887042956,
0.04940228754760040067426460507, 0.852229231062970287571024773968, 2.01341124605180104520993692086, 3.52818771670759771946365767942, 4.76131032959412641436553422263, 5.33100224682776416662148503002, 6.51352121123322101689262590407, 7.987256059256749100944379703034, 8.577549479876785577238154223877, 9.300949663142568383877316885161