Properties

Label 2-18e2-3.2-c8-0-1
Degree $2$
Conductor $324$
Sign $i$
Analytic cond. $131.990$
Root an. cond. $11.4887$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.11e3i·5-s + 285.·7-s + 2.21e4i·11-s − 3.84e4·13-s − 4.41e4i·17-s − 6.00e4·19-s + 2.89e5i·23-s − 8.55e5·25-s − 9.03e5i·29-s − 1.20e5·31-s + 3.18e5i·35-s − 2.67e6·37-s − 2.54e6i·41-s + 3.26e6·43-s + 9.69e5i·47-s + ⋯
L(s)  = 1  + 1.78i·5-s + 0.118·7-s + 1.51i·11-s − 1.34·13-s − 0.528i·17-s − 0.461·19-s + 1.03i·23-s − 2.19·25-s − 1.27i·29-s − 0.129·31-s + 0.212i·35-s − 1.42·37-s − 0.902i·41-s + 0.954·43-s + 0.198i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $i$
Analytic conductor: \(131.990\)
Root analytic conductor: \(11.4887\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :4),\ i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.2125550952\)
\(L(\frac12)\) \(\approx\) \(0.2125550952\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 1.11e3iT - 3.90e5T^{2} \)
7 \( 1 - 285.T + 5.76e6T^{2} \)
11 \( 1 - 2.21e4iT - 2.14e8T^{2} \)
13 \( 1 + 3.84e4T + 8.15e8T^{2} \)
17 \( 1 + 4.41e4iT - 6.97e9T^{2} \)
19 \( 1 + 6.00e4T + 1.69e10T^{2} \)
23 \( 1 - 2.89e5iT - 7.83e10T^{2} \)
29 \( 1 + 9.03e5iT - 5.00e11T^{2} \)
31 \( 1 + 1.20e5T + 8.52e11T^{2} \)
37 \( 1 + 2.67e6T + 3.51e12T^{2} \)
41 \( 1 + 2.54e6iT - 7.98e12T^{2} \)
43 \( 1 - 3.26e6T + 1.16e13T^{2} \)
47 \( 1 - 9.69e5iT - 2.38e13T^{2} \)
53 \( 1 - 1.46e7iT - 6.22e13T^{2} \)
59 \( 1 - 2.83e6iT - 1.46e14T^{2} \)
61 \( 1 + 1.03e7T + 1.91e14T^{2} \)
67 \( 1 - 3.39e7T + 4.06e14T^{2} \)
71 \( 1 - 7.67e6iT - 6.45e14T^{2} \)
73 \( 1 - 1.26e7T + 8.06e14T^{2} \)
79 \( 1 - 6.59e7T + 1.51e15T^{2} \)
83 \( 1 + 1.75e6iT - 2.25e15T^{2} \)
89 \( 1 - 8.38e6iT - 3.93e15T^{2} \)
97 \( 1 - 1.15e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80406303242041297060349448305, −10.02614115073108065386260575472, −9.415221796809190324136199734053, −7.57884219111941284748611381798, −7.31123179622319059132133934433, −6.35136842824487178579287300397, −5.04434681147497821085779710720, −3.87429726202467499767408931418, −2.63175520755759583593173342304, −2.00275166007086312073887042956, 0.04940228754760040067426460507, 0.852229231062970287571024773968, 2.01341124605180104520993692086, 3.52818771670759771946365767942, 4.76131032959412641436553422263, 5.33100224682776416662148503002, 6.51352121123322101689262590407, 7.987256059256749100944379703034, 8.577549479876785577238154223877, 9.300949663142568383877316885161

Graph of the $Z$-function along the critical line