Properties

Label 2-18e2-3.2-c8-0-15
Degree $2$
Conductor $324$
Sign $-i$
Analytic cond. $131.990$
Root an. cond. $11.4887$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 878. i·5-s + 1.52e3·7-s − 1.01e4i·11-s − 7.95e3·13-s + 9.94e4i·17-s + 1.05e5·19-s − 2.04e5i·23-s − 3.81e5·25-s + 4.32e5i·29-s + 1.06e6·31-s + 1.33e6i·35-s + 3.38e6·37-s + 2.50e6i·41-s + 6.56e6·43-s − 8.43e6i·47-s + ⋯
L(s)  = 1  + 1.40i·5-s + 0.634·7-s − 0.694i·11-s − 0.278·13-s + 1.19i·17-s + 0.807·19-s − 0.731i·23-s − 0.977·25-s + 0.612i·29-s + 1.15·31-s + 0.892i·35-s + 1.80·37-s + 0.887i·41-s + 1.92·43-s − 1.72i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(131.990\)
Root analytic conductor: \(11.4887\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.434523521\)
\(L(\frac12)\) \(\approx\) \(2.434523521\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 878. iT - 3.90e5T^{2} \)
7 \( 1 - 1.52e3T + 5.76e6T^{2} \)
11 \( 1 + 1.01e4iT - 2.14e8T^{2} \)
13 \( 1 + 7.95e3T + 8.15e8T^{2} \)
17 \( 1 - 9.94e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.05e5T + 1.69e10T^{2} \)
23 \( 1 + 2.04e5iT - 7.83e10T^{2} \)
29 \( 1 - 4.32e5iT - 5.00e11T^{2} \)
31 \( 1 - 1.06e6T + 8.52e11T^{2} \)
37 \( 1 - 3.38e6T + 3.51e12T^{2} \)
41 \( 1 - 2.50e6iT - 7.98e12T^{2} \)
43 \( 1 - 6.56e6T + 1.16e13T^{2} \)
47 \( 1 + 8.43e6iT - 2.38e13T^{2} \)
53 \( 1 - 1.67e6iT - 6.22e13T^{2} \)
59 \( 1 + 3.81e6iT - 1.46e14T^{2} \)
61 \( 1 + 2.51e7T + 1.91e14T^{2} \)
67 \( 1 + 3.27e6T + 4.06e14T^{2} \)
71 \( 1 - 4.56e7iT - 6.45e14T^{2} \)
73 \( 1 - 4.28e7T + 8.06e14T^{2} \)
79 \( 1 + 3.26e7T + 1.51e15T^{2} \)
83 \( 1 + 7.07e7iT - 2.25e15T^{2} \)
89 \( 1 - 6.81e7iT - 3.93e15T^{2} \)
97 \( 1 + 4.47e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65534309921497161171784879842, −9.706165799833141813488334657672, −8.411824290668742360516826973017, −7.63625769975655039198025540288, −6.59324146480464332114987833381, −5.80499231712798552535941435758, −4.43238894150370740779154393448, −3.25437230799707099764719368514, −2.38615420900548481163631898704, −1.00589612474288128278077552229, 0.58400016901776535189870221275, 1.40152188287431314168932426022, 2.67996097843447895802829838776, 4.38069689531042784988885059820, 4.87285599448851524929704108528, 5.89187391759015083808221601973, 7.44258074324749514839928157660, 8.009219528407905226953108827636, 9.299833629268881993984740009027, 9.588799337475076191950594882375

Graph of the $Z$-function along the critical line