L(s) = 1 | + 1.48i·2-s − 3-s − 0.193·4-s + 4.15i·5-s − 1.48i·6-s + 2.67i·8-s + 9-s − 6.15·10-s − 3.19i·11-s + 0.193·12-s + (−1.48 − 3.28i)13-s − 4.15i·15-s − 4.35·16-s − 3.35·17-s + 1.48i·18-s − 2.38i·19-s + ⋯ |
L(s) = 1 | + 1.04i·2-s − 0.577·3-s − 0.0969·4-s + 1.85i·5-s − 0.604i·6-s + 0.945i·8-s + 0.333·9-s − 1.94·10-s − 0.963i·11-s + 0.0559·12-s + (−0.410 − 0.911i)13-s − 1.07i·15-s − 1.08·16-s − 0.812·17-s + 0.349i·18-s − 0.547i·19-s + ⋯ |
Λ(s)=(=(1911s/2ΓC(s)L(s)(0.410+0.911i)Λ(2−s)
Λ(s)=(=(1911s/2ΓC(s+1/2)L(s)(0.410+0.911i)Λ(1−s)
Degree: |
2 |
Conductor: |
1911
= 3⋅72⋅13
|
Sign: |
0.410+0.911i
|
Analytic conductor: |
15.2594 |
Root analytic conductor: |
3.90632 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1911(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1911, ( :1/2), 0.410+0.911i)
|
Particular Values
L(1) |
≈ |
0.1383194752 |
L(21) |
≈ |
0.1383194752 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1 |
| 13 | 1+(1.48+3.28i)T |
good | 2 | 1−1.48iT−2T2 |
| 5 | 1−4.15iT−5T2 |
| 11 | 1+3.19iT−11T2 |
| 17 | 1+3.35T+17T2 |
| 19 | 1+2.38iT−19T2 |
| 23 | 1−0.387T+23T2 |
| 29 | 1+7.92T+29T2 |
| 31 | 1+10.7iT−31T2 |
| 37 | 1+1.61iT−37T2 |
| 41 | 1+1.45iT−41T2 |
| 43 | 1−1.92T+43T2 |
| 47 | 1−3.76iT−47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−6.15iT−59T2 |
| 61 | 1+14.4T+61T2 |
| 67 | 1−5.61iT−67T2 |
| 71 | 1−11.8iT−71T2 |
| 73 | 1−15.6iT−73T2 |
| 79 | 1+8.96T+79T2 |
| 83 | 1+6.99iT−83T2 |
| 89 | 1+0.932iT−89T2 |
| 97 | 1−3.35iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.941918735166031664149252935758, −8.924906288237989465269232271030, −7.76390828717565526411808748743, −7.42373397788222276127540892779, −6.66678857614951176514905661678, −5.94880250836217116333678227625, −5.59903555944447002956213963203, −4.21289177338175511976256952723, −3.03213426754001186191992816323, −2.29290838490209376026516058917,
0.05006247155408423926986687019, 1.52017363996875493607568444759, 1.91661352727798043243506738908, 3.59481036421459030761546156561, 4.61065575765795872003783602654, 4.84735414181332234720780930689, 6.07359402085860734872736703763, 6.98219337473295574473882349987, 7.83479066128507489051001126712, 9.087624368439693920090233367051