L(s) = 1 | + 3-s + 5-s + 9-s + 15-s − 2·23-s + 25-s + 27-s − 2·29-s − 2·43-s + 45-s + 2·47-s + 49-s − 2·67-s − 2·69-s + 75-s + 81-s − 2·87-s + 2·101-s − 2·115-s + ⋯ |
L(s) = 1 | + 3-s + 5-s + 9-s + 15-s − 2·23-s + 25-s + 27-s − 2·29-s − 2·43-s + 45-s + 2·47-s + 49-s − 2·67-s − 2·69-s + 75-s + 81-s − 2·87-s + 2·101-s − 2·115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.885009323\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.885009323\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
good | 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 + T )^{2} \) |
| 29 | \( ( 1 + T )^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 + T )^{2} \) |
| 47 | \( ( 1 - T )^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.292538845169000671451836209939, −8.780910300492600097267113344300, −7.85564758843381750571978705382, −7.18427323727915640917830058966, −6.18921084075095116236138322392, −5.47194327604924545404379565562, −4.32279217912789080584434997630, −3.48418478593803961018549036198, −2.35125817870869143538302608520, −1.67444121606388394473781174539,
1.67444121606388394473781174539, 2.35125817870869143538302608520, 3.48418478593803961018549036198, 4.32279217912789080584434997630, 5.47194327604924545404379565562, 6.18921084075095116236138322392, 7.18427323727915640917830058966, 7.85564758843381750571978705382, 8.780910300492600097267113344300, 9.292538845169000671451836209939