L(s) = 1 | + 3-s + 5-s + 9-s + 15-s − 2·23-s + 25-s + 27-s − 2·29-s − 2·43-s + 45-s + 2·47-s + 49-s − 2·67-s − 2·69-s + 75-s + 81-s − 2·87-s + 2·101-s − 2·115-s + ⋯ |
L(s) = 1 | + 3-s + 5-s + 9-s + 15-s − 2·23-s + 25-s + 27-s − 2·29-s − 2·43-s + 45-s + 2·47-s + 49-s − 2·67-s − 2·69-s + 75-s + 81-s − 2·87-s + 2·101-s − 2·115-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1920s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
1
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1920(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.885009323 |
L(21) |
≈ |
1.885009323 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
good | 7 | (1−T)(1+T) |
| 11 | 1+T2 |
| 13 | 1+T2 |
| 17 | 1+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1+T)2 |
| 29 | (1+T)2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | (1−T)(1+T) |
| 43 | (1+T)2 |
| 47 | (1−T)2 |
| 53 | (1−T)(1+T) |
| 59 | 1+T2 |
| 61 | (1−T)(1+T) |
| 67 | (1+T)2 |
| 71 | (1−T)(1+T) |
| 73 | (1−T)(1+T) |
| 79 | 1+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.292538845169000671451836209939, −8.780910300492600097267113344300, −7.85564758843381750571978705382, −7.18427323727915640917830058966, −6.18921084075095116236138322392, −5.47194327604924545404379565562, −4.32279217912789080584434997630, −3.48418478593803961018549036198, −2.35125817870869143538302608520, −1.67444121606388394473781174539,
1.67444121606388394473781174539, 2.35125817870869143538302608520, 3.48418478593803961018549036198, 4.32279217912789080584434997630, 5.47194327604924545404379565562, 6.18921084075095116236138322392, 7.18427323727915640917830058966, 7.85564758843381750571978705382, 8.780910300492600097267113344300, 9.292538845169000671451836209939