L(s) = 1 | + (−0.375 + 2.32i)2-s + (0.220 − 0.242i)3-s + (−3.36 − 1.11i)4-s + (−4.10 − 0.529i)5-s + (0.480 + 0.602i)6-s + (−0.687 − 4.25i)7-s + (1.68 − 3.23i)8-s + (0.277 + 2.87i)9-s + (2.77 − 9.35i)10-s + (−2.04 + 0.131i)11-s + (−1.01 + 0.570i)12-s + (0.928 − 0.790i)13-s + 10.1·14-s + (−1.03 + 0.878i)15-s + (1.20 + 0.896i)16-s + (−1.03 + 2.80i)17-s + ⋯ |
L(s) = 1 | + (−0.265 + 1.64i)2-s + (0.127 − 0.139i)3-s + (−1.68 − 0.559i)4-s + (−1.83 − 0.236i)5-s + (0.196 + 0.246i)6-s + (−0.259 − 1.60i)7-s + (0.596 − 1.14i)8-s + (0.0925 + 0.959i)9-s + (0.877 − 2.95i)10-s + (−0.615 + 0.0395i)11-s + (−0.292 + 0.164i)12-s + (0.257 − 0.219i)13-s + 2.71·14-s + (−0.266 + 0.226i)15-s + (0.300 + 0.224i)16-s + (−0.249 + 0.679i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(0.0305+0.999i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(0.0305+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
0.0305+0.999i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(158,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), 0.0305+0.999i)
|
Particular Values
L(1) |
≈ |
0.0146190−0.0141793i |
L(21) |
≈ |
0.0146190−0.0141793i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(13.9−1.87i)T |
good | 2 | 1+(0.375−2.32i)T+(−1.89−0.630i)T2 |
| 3 | 1+(−0.220+0.242i)T+(−0.288−2.98i)T2 |
| 5 | 1+(4.10+0.529i)T+(4.83+1.26i)T2 |
| 7 | 1+(0.687+4.25i)T+(−6.64+2.20i)T2 |
| 11 | 1+(2.04−0.131i)T+(10.9−1.40i)T2 |
| 13 | 1+(−0.928+0.790i)T+(2.07−12.8i)T2 |
| 17 | 1+(1.03−2.80i)T+(−12.9−11.0i)T2 |
| 19 | 1+(6.57−3.16i)T+(11.8−14.8i)T2 |
| 23 | 1+(4.12+1.66i)T+(16.5+16.0i)T2 |
| 29 | 1+(0.450−0.253i)T+(15.0−24.7i)T2 |
| 31 | 1+(−2.44+3.50i)T+(−10.7−29.0i)T2 |
| 37 | 1+(−1.53+1.14i)T+(10.5−35.4i)T2 |
| 41 | 1+(−1.18+3.21i)T+(−31.2−26.5i)T2 |
| 43 | 1+(6.11−0.392i)T+(42.6−5.49i)T2 |
| 47 | 1+(0.0126+0.0284i)T+(−31.5+34.7i)T2 |
| 53 | 1+(7.03−11.5i)T+(−24.5−46.9i)T2 |
| 59 | 1+(1.46+4.94i)T+(−49.4+32.1i)T2 |
| 61 | 1+(−2.74−3.02i)T+(−5.85+60.7i)T2 |
| 67 | 1+(0.00351+0.00793i)T+(−45.0+49.5i)T2 |
| 71 | 1+(0.893+9.25i)T+(−69.6+13.5i)T2 |
| 73 | 1+(−9.09+6.78i)T+(20.7−69.9i)T2 |
| 79 | 1+(17.1−2.21i)T+(76.4−20.0i)T2 |
| 83 | 1+(−6.92−3.33i)T+(51.7+64.8i)T2 |
| 89 | 1+(−1.78−2.55i)T+(−30.7+83.5i)T2 |
| 97 | 1+(5.45+3.55i)T+(39.2+88.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.59992474258052895559138752096, −11.01381883333191991884855649530, −10.30572743515295201315581078950, −8.487430465425033291527351075917, −7.911150327228490146284148590812, −7.46147651321945821740280285904, −6.35776559310999878439271471091, −4.64250446989531780945416706767, −3.97088074403857039398515156673, −0.01864561737587065103422834263,
2.59526075004943595176512177735, 3.52307744550557911905265389325, 4.62747082538380709781393052763, 6.60600646553523494730281445215, 8.320709441374417311315262973876, 8.817883462324472848064119976699, 9.897823267320403774522912330747, 11.17572081898359195418656695967, 11.67088390061573607818943649855, 12.33466201450057084952961427872