Properties

Label 2-197-197.158-c1-0-10
Degree $2$
Conductor $197$
Sign $0.0305 + 0.999i$
Analytic cond. $1.57305$
Root an. cond. $1.25421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.375 + 2.32i)2-s + (0.220 − 0.242i)3-s + (−3.36 − 1.11i)4-s + (−4.10 − 0.529i)5-s + (0.480 + 0.602i)6-s + (−0.687 − 4.25i)7-s + (1.68 − 3.23i)8-s + (0.277 + 2.87i)9-s + (2.77 − 9.35i)10-s + (−2.04 + 0.131i)11-s + (−1.01 + 0.570i)12-s + (0.928 − 0.790i)13-s + 10.1·14-s + (−1.03 + 0.878i)15-s + (1.20 + 0.896i)16-s + (−1.03 + 2.80i)17-s + ⋯
L(s)  = 1  + (−0.265 + 1.64i)2-s + (0.127 − 0.139i)3-s + (−1.68 − 0.559i)4-s + (−1.83 − 0.236i)5-s + (0.196 + 0.246i)6-s + (−0.259 − 1.60i)7-s + (0.596 − 1.14i)8-s + (0.0925 + 0.959i)9-s + (0.877 − 2.95i)10-s + (−0.615 + 0.0395i)11-s + (−0.292 + 0.164i)12-s + (0.257 − 0.219i)13-s + 2.71·14-s + (−0.266 + 0.226i)15-s + (0.300 + 0.224i)16-s + (−0.249 + 0.679i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0305 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0305 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $0.0305 + 0.999i$
Analytic conductor: \(1.57305\)
Root analytic conductor: \(1.25421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{197} (158, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :1/2),\ 0.0305 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0146190 - 0.0141793i\)
\(L(\frac12)\) \(\approx\) \(0.0146190 - 0.0141793i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + (13.9 - 1.87i)T \)
good2 \( 1 + (0.375 - 2.32i)T + (-1.89 - 0.630i)T^{2} \)
3 \( 1 + (-0.220 + 0.242i)T + (-0.288 - 2.98i)T^{2} \)
5 \( 1 + (4.10 + 0.529i)T + (4.83 + 1.26i)T^{2} \)
7 \( 1 + (0.687 + 4.25i)T + (-6.64 + 2.20i)T^{2} \)
11 \( 1 + (2.04 - 0.131i)T + (10.9 - 1.40i)T^{2} \)
13 \( 1 + (-0.928 + 0.790i)T + (2.07 - 12.8i)T^{2} \)
17 \( 1 + (1.03 - 2.80i)T + (-12.9 - 11.0i)T^{2} \)
19 \( 1 + (6.57 - 3.16i)T + (11.8 - 14.8i)T^{2} \)
23 \( 1 + (4.12 + 1.66i)T + (16.5 + 16.0i)T^{2} \)
29 \( 1 + (0.450 - 0.253i)T + (15.0 - 24.7i)T^{2} \)
31 \( 1 + (-2.44 + 3.50i)T + (-10.7 - 29.0i)T^{2} \)
37 \( 1 + (-1.53 + 1.14i)T + (10.5 - 35.4i)T^{2} \)
41 \( 1 + (-1.18 + 3.21i)T + (-31.2 - 26.5i)T^{2} \)
43 \( 1 + (6.11 - 0.392i)T + (42.6 - 5.49i)T^{2} \)
47 \( 1 + (0.0126 + 0.0284i)T + (-31.5 + 34.7i)T^{2} \)
53 \( 1 + (7.03 - 11.5i)T + (-24.5 - 46.9i)T^{2} \)
59 \( 1 + (1.46 + 4.94i)T + (-49.4 + 32.1i)T^{2} \)
61 \( 1 + (-2.74 - 3.02i)T + (-5.85 + 60.7i)T^{2} \)
67 \( 1 + (0.00351 + 0.00793i)T + (-45.0 + 49.5i)T^{2} \)
71 \( 1 + (0.893 + 9.25i)T + (-69.6 + 13.5i)T^{2} \)
73 \( 1 + (-9.09 + 6.78i)T + (20.7 - 69.9i)T^{2} \)
79 \( 1 + (17.1 - 2.21i)T + (76.4 - 20.0i)T^{2} \)
83 \( 1 + (-6.92 - 3.33i)T + (51.7 + 64.8i)T^{2} \)
89 \( 1 + (-1.78 - 2.55i)T + (-30.7 + 83.5i)T^{2} \)
97 \( 1 + (5.45 + 3.55i)T + (39.2 + 88.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59992474258052895559138752096, −11.01381883333191991884855649530, −10.30572743515295201315581078950, −8.487430465425033291527351075917, −7.911150327228490146284148590812, −7.46147651321945821740280285904, −6.35776559310999878439271471091, −4.64250446989531780945416706767, −3.97088074403857039398515156673, −0.01864561737587065103422834263, 2.59526075004943595176512177735, 3.52307744550557911905265389325, 4.62747082538380709781393052763, 6.60600646553523494730281445215, 8.320709441374417311315262973876, 8.817883462324472848064119976699, 9.897823267320403774522912330747, 11.17572081898359195418656695967, 11.67088390061573607818943649855, 12.33466201450057084952961427872

Graph of the $Z$-function along the critical line